Regular points of extremal subsets in Alexandrov spaces

被引:3
|
作者
Fujioka, Tadashi [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Alexandrov spaces; extremal subsets; regular points; strainers;
D O I
10.2969/jmsj/84388438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define regular points of an extremal subset in an Alexandrov space and study their basic properties. We show that a neighbor-hood of a regular point in an extremal subset is almost isometric to an open subset in Euclidean space and that the set of regular points in an extremal sub-set has full measure and is dense in it. These results actually hold for strained points in an extremal subset. Applications include the volume convergence of extremal subsets under a noncollapsing convergence of Alexandrov spaces, and the existence of a cone fibration structure of a metric neighborhood of the regular part of an extremal subset. In an appendix, a deformation retraction of a metric neighborhood of a general extremal subset is constructed.
引用
收藏
页码:1245 / 1268
页数:24
相关论文
共 50 条
  • [41] Affine functions on Alexandrov spaces
    Lange, Christian
    Stadler, Stephan
    MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (1-2) : 455 - 469
  • [42] Heat Flow on Alexandrov Spaces
    Gigli, Nicola
    Kuwada, Kazumasa
    Ohta, Shin-Ichi
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (03) : 307 - 331
  • [43] GOOD COVERINGS OF ALEXANDROV SPACES
    Mitsuishi, Ayato
    Yamaguchi, Takao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (11) : 8107 - 8130
  • [44] Cohomogeneity one Alexandrov spaces
    Fernando Galaz-Garcia
    Catherine Searle
    Transformation Groups, 2011, 16 : 91 - 107
  • [45] Isometry groups of Alexandrov spaces
    Galaz-Garcia, Fernando
    Guijarro, Luis
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 567 - 579
  • [46] Affine functions on Alexandrov spaces
    Christian Lange
    Stephan Stadler
    Mathematische Zeitschrift, 2018, 289 : 455 - 469
  • [47] Minimal volume Alexandrov spaces
    Storm, PA
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 61 (02) : 195 - 225
  • [48] CENTRAL POINTS AND MEASURES, AND DENSE SUBSETS OF COMPACT METRIC SPACES
    Niemiec, Piotr
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2012, 40 (01) : 161 - 180
  • [49] Ekeland's variational principle in Frechet spaces and the density of extremal points
    Qiu, JH
    STUDIA MATHEMATICA, 2005, 168 (01) : 81 - 94
  • [50] Farthest points on most Alexandrov surfaces
    Rouyer, Joel
    Vilcu, Costin
    ADVANCES IN GEOMETRY, 2020, 20 (01) : 139 - 148