Analysis of a Curved Beam MEMS Piezoelectric Vibration Energy Harvester

被引:8
|
作者
Zhou, Yong [1 ]
Dong, Yong [1 ]
Li, Shi [1 ]
机构
[1] Hunan Inst Sci & Technol, Coll Mech Engn, Yueyang, Peoples R China
关键词
MEMS; Curved beam; Piezoelectric; Finite deformation; Coupling vibration;
D O I
10.4028/www.scientific.net/AMR.139-141.1578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An analytical model is derived for obtaining the dynamic performance of a thin curved composite piezoelectric beam with variable curvatures for the MEMS piezoelectric vibration energy harvester. The plane curved beam theory with rectangular section is employed to explore the bending and twisting coupling vibration characteristics. In order to satisfy the most available environmental frequencies, which are on the order of 1000Hz, the parameters of the spiraled composite beam bonded with piezoelectric on the surfaces are investigated to provide a method of how to design low resonance beams while keeping the compacting structural assembly. The results indicate the adoption of ANSYS (R) software to carry out the MEMS piezoelectric vibration energy harvester's numerical simulation can improve the accuracy of the harvester designing and manufacturing consumedly. And the simulation data also provide a theory analysis foundation for the engineering, design and application of harvester.
引用
收藏
页码:1578 / 1581
页数:4
相关论文
共 50 条
  • [1] The research on damage detection of curved beam based on piezoelectric vibration energy harvester
    Zhao X.
    Li S.
    Li Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (11): : 3035 - 3044
  • [2] A MEMS PIEZOELECTRIC VIBRATION ENERGY HARVESTER BASED ON TRAPEZOIDAL CANTILEVER BEAM ARRAY
    He, Xianming
    Wen, Quan
    Wen, Zhiyu
    Mu, Xiaojing
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 532 - 535
  • [3] AUTOPARAMETRIC RESONANCE IN A PIEZOELECTRIC MEMS VIBRATION ENERGY HARVESTER
    Jia, Yu
    Du, Sijun
    Arroyo, Emmanuelle
    Seshia, Ashwin A.
    2018 IEEE MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2018, : 226 - 229
  • [4] ANALYSIS OF FREQUENCY CHARACTERISTICS OF MEMS PIEZOELECTRIC CANTILEVER BEAM BASED ENERGY HARVESTER
    Zhang, Jin-hui
    Ma, Sheng-lin
    Qin, Li-feng
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 193 - 197
  • [5] Vibration piezoelectric energy harvester with multi-beam
    Cui, Yan
    Zhang, Qunying
    Yao, Minglei
    Dong, Weijie
    Gao, Shiqiao
    AIP ADVANCES, 2015, 5 (04):
  • [6] Modeling and analysis of vibration-based MEMS piezoelectric energy harvester for green energy source
    Saadon, Salem
    Sidek, Othman
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (5-6): : 614 - 617
  • [7] Wireless Vibration Sensing System Powered by a Piezoelectric MEMS Vibration Energy Harvester
    Takei, Ryohei
    Okada, Hironao
    Kobayashi, Takeshi
    Noda, Daiji
    Ohta, Ryo
    Itoh, Toshihiro
    2016 IEEE SENSORS, 2016,
  • [8] Investigation of Design Parameters in MEMS Based Piezoelectric Vibration Energy Harvester
    Sil, Indrajit
    Biswas, Kalyan
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES KOLKATA CONFERENCE (IEEE EDKCON), 2018, : 64 - 69
  • [9] A MEMS based piezoelectric vibration energy harvester for fault monitoring system
    Licheng Deng
    Yuming Fang
    Debo Wang
    Zhiyu Wen
    Microsystem Technologies, 2018, 24 : 3637 - 3644
  • [10] Vibration-based MEMS Piezoelectric Energy Harvester for Power Optimization
    Sidek, Othman
    Saadon, Salem
    UKSIM-AMSS 15TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM 2013), 2013, : 241 - 246