INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET
被引:30
|
作者:
Breckner, Brigitte E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, RomaniaUniv Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
Breckner, Brigitte E.
[1
]
Radulescu, Vicentiu D.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
Univ Craiova, Dept Math, Craiova 200585, RomaniaUniv Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
Radulescu, Vicentiu D.
[2
,3
]
Varga, Csaba
论文数: 0引用数: 0
h-index: 0
机构:
Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, RomaniaUniv Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
Varga, Csaba
[1
]
机构:
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
We study the nonlinear elliptic equation Delta u(x) + a(x) u(x) = g(x) f(u(x)) on the Sierpinski gasket and with zero Dirichlet boundary condition. By extending a method introduced by Faraci and Kristaly in the framework of Sobolev spaces to the case of function spaces on fractal domains, we establish the existence of infinitely many weak solutions.