INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET

被引:30
|
作者
Breckner, Brigitte E. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Varga, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Sierpinski gasket; weak Laplace operator; nonlinear elliptic equation; weak solution; Hausdorff measure; attractor; NONLINEAR ELLIPTIC-EQUATIONS; DIFFERENTIAL-EQUATIONS;
D O I
10.1142/S0219530511001844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear elliptic equation Delta u(x) + a(x) u(x) = g(x) f(u(x)) on the Sierpinski gasket and with zero Dirichlet boundary condition. By extending a method introduced by Faraci and Kristaly in the framework of Sobolev spaces to the case of function spaces on fractal domains, we establish the existence of infinitely many weak solutions.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [31] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [32] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [33] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [34] An integral related to the Cauchy transform on the Sierpinski gasket
    Dong, XH
    Lau, KS
    EXPERIMENTAL MATHEMATICS, 2004, 13 (04) : 415 - 419
  • [35] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [36] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021
  • [37] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [38] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021
  • [39] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [40] AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS
    Wang, Songjing
    Yu, Zhouyu
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)