INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET

被引:30
|
作者
Breckner, Brigitte E. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Varga, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Sierpinski gasket; weak Laplace operator; nonlinear elliptic equation; weak solution; Hausdorff measure; attractor; NONLINEAR ELLIPTIC-EQUATIONS; DIFFERENTIAL-EQUATIONS;
D O I
10.1142/S0219530511001844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear elliptic equation Delta u(x) + a(x) u(x) = g(x) f(u(x)) on the Sierpinski gasket and with zero Dirichlet boundary condition. By extending a method introduced by Faraci and Kristaly in the framework of Sobolev spaces to the case of function spaces on fractal domains, we establish the existence of infinitely many weak solutions.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [21] Maximum density for the Sierpinski gasket
    Zhou, Ji
    Luo, Mao-Kang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 597 - 603
  • [22] Nonlinear problems on the Sierpinski gasket
    Bisci, Giovanni Molica
    Repovs, Dusan
    Servadei, Raffaella
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) : 883 - 895
  • [23] Infinitely many solutions for a boundary value problem with impulsive effects
    Bonanno, Gabriele
    Di Bella, Beatrice
    Henderson, Johnny
    BOUNDARY VALUE PROBLEMS, 2013,
  • [25] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [26] Spectral triples for the variants of the Sierpinski gasket
    Rivera, Andrea Arauza
    JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (03) : 205 - 246
  • [27] Bounds of Hausdorff measure of the Sierpinski gasket
    Jia, Baoguo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1016 - 1024
  • [28] Spectral operators on the Sierpinski gasket I
    Allan, Adam
    Barany, Michael
    Strichartz, Robert S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (06) : 521 - 543
  • [29] A note on elliptic problems on the Sierpinski gasket
    Breckner, Brigitte E.
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (04): : 469 - 477
  • [30] Infinitely many solutions for nonlinear periodic boundary value problem with impulses
    Weibing Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 1093 - 1103