Automatic classification method of liver ultrasound standard plane images using pre-trained convolutional neural network

被引:11
|
作者
Wu, Jiaxiang [1 ,3 ]
Zeng, Pan [2 ]
Liu, Peizhong [1 ,2 ,3 ]
Lv, Guorong [1 ,3 ,4 ]
机构
[1] Quanzhou Med Coll, Sch Med, Quanzhou 362021, Peoples R China
[2] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[3] Huaqiao Univ, Coll Med, Quanzhou 362021, Peoples R China
[4] Fujian Med Univ, Affiliated Hosp 2, Dept Ultrasound, Quanzhou, Peoples R China
关键词
Ultrasound images; liver standard plane; image classification; convolutional neural network;
D O I
10.1080/09540091.2021.2015748
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The liver ultrasound standard planes (LUSP) have significant diagnostic significance during ultrasonic liver diagnosis. However, the location and acquisition of LUSP could be a time-consuming and complicated mission and requires the relevant operator to have comprehensive knowledge of ultrasound diagnosis. Therefore, this study puts forward an automatic classification approach for eight types of LUSP based on a pre-trained CNN(Convolutional Neural Network). With the comparison to classification methods on the basis of conventional hand-craft characteristics, the method proposed by us can automatically catch the appearance in LUSP and classify the LUSP. The proposed model is consisted of 13 convolutional layers with little 3x3 size kernels and three completely connected layers. To address the limitation of data, we adopt the transfer learning strategy, which pre-trains the weight of convolutional layers and fine-tune the weight of fully connected layers. These extensive experiments show that the accuracy of the suggested method reaches 92.31%, as well as the performance of the suggested means outperforms previous ways, which demonstrates the suitability and effectiveness of CNN to classify LUSP for clinical diagnosis.
引用
收藏
页码:975 / 989
页数:15
相关论文
共 50 条
  • [1] Painting Classification Using a Pre-trained Convolutional Neural Network
    Banerji, Sugata
    Sinha, Atreyee
    COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING, ICVGIP 2016, 2017, 10481 : 168 - 179
  • [2] Transfer learning with pre-trained deep convolutional neural networks for the automatic assessment of liver steatosis in ultrasound images
    Constantinescu, Elena Codruta
    Udristoiu, Anca-Loredana
    Udristoiu, Stefan Cristinel
    Iacob, Andreea Valentina
    Gruionu, Lucian Gheorghe
    Gruionu, Gabriel
    Sandulescu, Larisa
    Saftoiu, Adrian
    MEDICAL ULTRASONOGRAPHY, 2021, 23 (02) : 135 - 139
  • [3] Transfer Learning for Mammogram Classification Using Pre-Trained Convolutional Neural Network
    Yasuda, K.
    Tsuru, H.
    Ohki, M.
    MEDICAL PHYSICS, 2017, 44 (06) : 3102 - 3102
  • [4] Pre-Trained Convolutional Neural Networks for Breast Cancer Detection Using Ultrasound Images
    Masud, Mehedi
    Hossain, M. Shamim
    Alhumyani, Hesham
    Alshamrani, Sultan S.
    Cheikhrouhou, Omar
    Ibrahim, Saleh
    Muhammad, Ghulam
    Rashed, Amr E. Eldin
    Gupta, B. B.
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2021, 21 (04)
  • [5] Pre-Trained Convolutional Neural Network for Classification of Tanning Leather Image
    Winiarti, Sri
    Prahara, Adhi
    Murinto
    Ismi, Dewi Pramudi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (01) : 212 - 217
  • [6] Classification of Atrial Fibrillation with Pre-Trained Convolutional Neural Network Models
    Qayyum, Abdul
    Meriaudeau, Fabrice
    Chan, Genevieve C. Y.
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 594 - 599
  • [7] Classification of defects in wooden structures using pre-trained models of convolutional neural network
    Ehtisham, Rana
    Qayyum, Waqas
    Camp, Charles, V
    Plevris, Vagelis
    Mir, Junaid
    Khan, Qaiser-uz Zaman
    Ahmad, Afaq
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 19
  • [8] Automatic variogram inference using pre-trained Convolutional Neural Networks
    Karim, Mokdad
    Behrang, Koushavand
    Jeff, Boisvert
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [9] Automatic detection of potholes using VGG-16 pre-trained network and Convolutional Neural Network
    Swain, Satyabrata
    Tripathy, Asis Kumar
    HELIYON, 2024, 10 (10)
  • [10] A Method of Choosing a Pre-trained Convolutional Neural Network for Transfer Learning in Image Classification Problems
    Trofimov, Alexander G.
    Bogatyreva, Anastasia A.
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH III, 2020, 856 : 263 - 270