Order complexes of coset posets of finite groups are not contractible

被引:15
作者
Shareshian, John [2 ]
Woodroofe, Russ [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
Order complex; Coset poset; Finite group; Smith Theory; PROBABILISTIC ZETA-FUNCTION; PRIMITIVE PERMUTATION-GROUPS; EULER CHARACTERISTICS; (NON-)CONTRACTIBILITY; SUBGROUPS;
D O I
10.1016/j.aim.2015.10.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the order complex of the poset of all cosets of all proper subgroups of a finite group G is never F-2-acyclic and therefore never contractible. This settles a question of K.S. Brown. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:758 / 773
页数:16
相关论文
共 50 条
[41]   Finite groups of bounded rank with an almost regular automorphism of prime order [J].
Khukhro, EI .
SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (05) :955-962
[42]   ONE COROLLARY OF THE DESCRIPTION OF FINITE GROUPS WITHOUT ELEMENTS OF ORDER 6 [J].
Kondrat'ev, Anatoly Semenovich ;
Nirova, Marina Sefovna .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02) :854-858
[43]   On connected components and perfect codes of proper order graphs of finite groups [J].
Li, Huani ;
Lin, Shixun ;
Ma, Xuanlong .
PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2024, 73 (01) :68-76
[44]   Finite Groups of Bounded Rank with an Almost Regular Automorphism of Prime Order [J].
E. I. Khukhro .
Siberian Mathematical Journal, 2002, 43 :955-962
[45]   Finite groups in which elements of the same order outside the center are conjugate [J].
Xing-zhong You ;
Guo-hua Qian ;
Wu-jie Shi .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (10) :1493-1500
[46]   Finite groups in which elements of the same order outside the center are conjugate [J].
Xing-zhong You ;
Guo-hua Qian ;
Wu-jie Shi .
Science in China Series A: Mathematics, 2007, 50 :1493-1500
[47]   On the Partial Π-Property of Some Subgroups of Prime Power Order of Finite Groups [J].
Qiu, Zhengtian ;
Liu, Jianjun ;
Chen, Guiyun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
[48]   Non-abelian Sylow subgroups of finite groups of even order [J].
Naoki Chigira ;
Nobuo Iiyori ;
Hiroyoshi Yamaki .
Inventiones mathematicae, 2000, 139 :525-539
[49]   Isolated Involutions in Finite Groups [J].
Waldecker, Rebecca .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 226 (1061) :1-+
[50]   A condition for the solvability of finite groups [J].
Miao, L. ;
Qian, G. .
SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (04) :687-691