Asymptotic expansions for the gamma function

被引:7
|
作者
Xu, Aimin [1 ]
Hu, Yongcai [2 ]
Tang, Peipei [3 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] Henan Polytech Inst, Dept Basic Educ, Nanyang 473000, Peoples R China
[3] Zhejing Univ City Coll, Sch Comp Sci, Hangzhou 310015, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Gamma function; Asymptotic expansion; Cycle indicator polynomial; Lagrange-Burmann formula; GENERALIZED STIRLING FORMULA; GENERATED APPROXIMATION; INEQUALITIES; CONSTANT;
D O I
10.1016/j.jnt.2016.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mortici (2015) [31] proposed a new formula for approximating the gamma function and the convergence of the corresponding asymptotic series is very fast in comparison with other classical or recently discovered asymptotic series. In this paper, by the Lagrange-Burmann formula we give an explicit formula for determining the coefficients a(k) (k = 1,2,...) in Mortici's formula such that Gamma(x + 1)/root 2 pi x(x/e)(x) similar to exp{Sigma(infinity)(k=1) a(k) (x/12x(2) + 2/5)(k)}, x -> infinity. Moreover, by the cycle indicator polynomial of symmetric group, we give an explicit expression for the coefficients b(k) (k = 0,1,...) of the following expansion: Gamma(x + 1)/root 2 pi x(x/e)(x) similar to (Sigma(infinity)(k=0) b(k) (x/12x(2) + 2/5)(k))(1/r), x -> infinity. A recursive formula for calculating the coefficients b(k) (k = 0,1,...) is also given. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [1] Remarks on asymptotic expansions for the gamma function
    Chen, Chao-Ping
    Lin, Long
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2322 - 2326
  • [2] On Some Asymptotic Expansions for the Gamma Function
    Mahmoud, Mansour
    Almuashi, Hanan
    SYMMETRY-BASEL, 2022, 14 (11):
  • [3] Asymptotic expansions for the reciprocal of the gamma function
    Withers, Christopher S.
    Nadarajah, Saralees
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 614 - 618
  • [4] Inequalities and asymptotic expansions for the gamma function
    Chen, Chao-Ping
    Liu, Jing-Yun
    JOURNAL OF NUMBER THEORY, 2015, 149 : 313 - 326
  • [5] Inequalities for the gamma function relating to asymptotic expansions
    Allasia, G
    Giordano, C
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 543 - 555
  • [6] ASYMPTOTIC EXPANSIONS AND INEQUALITIES RELATING TO THE GAMMA FUNCTION
    Chen, Chao-Ping
    Mortici, Cristinel
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2022, 16 (02) : 379 - 399
  • [7] Sharp inequalities and asymptotic expansions for the gamma function
    Chen, Chao-Ping
    Tong, Wei-Wei
    JOURNAL OF NUMBER THEORY, 2016, 160 : 418 - 431
  • [8] Asymptotic expansions for the gamma function in terms of hyperbolic functions
    Yang, Zhenhang
    Tian, Jing-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (01) : 133 - 155
  • [9] ASYMPTOTIC EXPANSIONS FOR THE INCOMPLETE GAMMA FUNCTION IN THE TRANSITION REGIONS
    Nemes, Gergo
    Daalhuis, Adri B. Olde
    MATHEMATICS OF COMPUTATION, 2019, 88 (318) : 1805 - 1827
  • [10] Uniform asymptotic expansions for the Barnes double gamma function
    Billingham, J.
    King, A.C.
    Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1997, 453 (1964): : 1817 - 1829