A parallel metrization theorem

被引:0
作者
Banakh, Taras [1 ,2 ]
Hryniv, Olena [2 ]
机构
[1] Jan Kochanowski Univ Kielce, Inst Math, Swietokrzyska 15, PL-25406 Kielce, Poland
[2] Ivan Franko Natl Univ Lviv, Fac Mech & Math, Univ Ska 1, UA-79000 Lvov, Ukraine
关键词
Metrization; Parallel sets; Metric space;
D O I
10.1007/s40879-018-00311-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two non-empty sets A, B of a metric space (X, d) are called parallel if d(a,B)=d(A,B)=d(A,b)or any points a is an element of A and b is an element of B. Answering a question posed on mathoverflow.net, we prove that for a cover Cof a metrizable space X by compact subsets, the following conditions are equivalent: (i) the topology of X is generated by a metric d such that any two sets A,B is an element of Care parallel; (ii) the cover C is disjoint, lower semicontinuous and upper semicontinuous.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
[41]   A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES [J].
Duchon, Miloslav ;
Malicky, Peter .
REAL FUNCTIONS '08: FUNCTIONAL EQUATIONS, MEASURES, INTEGRATION AND HARMONIC ANALYSIS, 2009, 44 :159-+
[42]   A graphical version of Reich's fixed point theorem [J].
Alfuraidan, Monther R. ;
Bachar, Mostafa ;
Khamsi, Mohamed A. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06) :3931-3938
[43]   A fixed point theorem for set-valued mappings [J].
Banerjee, A ;
Singh, TB .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (12) :1397-1403
[44]   Extended suprametric spaces and Stone-type theorem [J].
Panda, Sumati Kumari ;
Agarwal, Ravi P. ;
Karapinar, Erdal .
AIMS MATHEMATICS, 2023, 8 (10) :23183-23199
[45]   A Fixed Point Theorem for Set-Valued Mappings [J].
Amitabh Banerjee ;
Thakur Balwant Singh .
Applied Mathematics and Mechanics, 2001, 22 :1397-1403
[46]   Fixed point theorem for generalized Chatterjea type mappings [J].
Pacurar, C. M. ;
Popescu, O. .
ACTA MATHEMATICA HUNGARICA, 2024, 173 (02) :500-509
[47]   A fixed point theorem for a system of Pachpatte operator equations [J].
Erdal Karapınar ;
Ali Öztürk ;
Vladimir Rakočević .
Aequationes mathematicae, 2021, 95 :245-254
[48]   Fixed point theorem for mappings contracting perimeters of triangles [J].
Petrov, Evgeniy .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (03)
[49]   Fixed point theorem for mappings contracting perimeters of triangles [J].
Evgeniy Petrov .
Journal of Fixed Point Theory and Applications, 2023, 25
[50]   Generalized Rademacher-Stepanov Type Theorem and Applications [J].
Ranjbar-Motlagh, Alireza .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (03) :249-275