A parallel metrization theorem

被引:0
|
作者
Banakh, Taras [1 ,2 ]
Hryniv, Olena [2 ]
机构
[1] Jan Kochanowski Univ Kielce, Inst Math, Swietokrzyska 15, PL-25406 Kielce, Poland
[2] Ivan Franko Natl Univ Lviv, Fac Mech & Math, Univ Ska 1, UA-79000 Lvov, Ukraine
关键词
Metrization; Parallel sets; Metric space;
D O I
10.1007/s40879-018-00311-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two non-empty sets A, B of a metric space (X, d) are called parallel if d(a,B)=d(A,B)=d(A,b)or any points a is an element of A and b is an element of B. Answering a question posed on mathoverflow.net, we prove that for a cover Cof a metrizable space X by compact subsets, the following conditions are equivalent: (i) the topology of X is generated by a metric d such that any two sets A,B is an element of Care parallel; (ii) the cover C is disjoint, lower semicontinuous and upper semicontinuous.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
  • [1] A parallel metrization theorem
    Taras Banakh
    Olena Hryniv
    European Journal of Mathematics, 2020, 6 : 110 - 113
  • [2] AN ALTERNATIVE TO BING'S GENERALIZATION OF URYSOHN'S METRIZATION THEOREM
    Hung, H. H.
    TOPOLOGY AND ITS APPLICATIONS, 1980, 11 (03) : 275 - 279
  • [3] EXPLICIT METRIZATION
    SHORE, SD
    SAWYER, LJ
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 328 - 336
  • [4] METRIZATION OF LINEAR CONNECTIONS
    Vanzurova, Alena
    Zackova, Petra
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 453 - 464
  • [5] Two refinements of Frink's metrization theorem and fixed point results for Lipschitzian mappings on quasimetric spaces
    Chrzaszcz, Katarzyna
    Jachymski, Jacek
    Turobos, Filip
    AEQUATIONES MATHEMATICAE, 2019, 93 (01) : 277 - 297
  • [6] Two refinements of Frink’s metrization theorem and fixed point results for Lipschitzian mappings on quasimetric spaces
    Katarzyna Chrząszcz
    Jacek Jachymski
    Filip Turoboś
    Aequationes mathematicae, 2019, 93 : 277 - 297
  • [7] Metrization of Weighted Graphs
    Dovgoshey, Oleksiy
    Martio, Olli
    Vuorinen, Matti
    ANNALS OF COMBINATORICS, 2013, 17 (03) : 455 - 476
  • [8] A new approach to metrization
    Arenas, FG
    Sánchez-Granero, MA
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (01) : 15 - 26
  • [9] Metrization of Weighted Graphs
    Oleksiy Dovgoshey
    Olli Martio
    Matti Vuorinen
    Annals of Combinatorics, 2013, 17 : 455 - 476
  • [10] Weak developments and metrization
    Alleche, B
    Arhangel'skii, AV
    Calbrix, J
    TOPOLOGY AND ITS APPLICATIONS, 2000, 100 (01) : 23 - 38