Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.)

被引:91
|
作者
Hinojosa, Leonardo [1 ]
Matanguihan, Janet B. [2 ]
Murphy, Kevin M. [1 ]
机构
[1] Washington State Univ, Dept Crop & Soil Sci, Sustainable Seed Syst Lab, Pullman, WA 99164 USA
[2] Messiah Coll, Dept Biol Sci, Mechanicsburg, PA USA
基金
美国食品与农业研究所;
关键词
Chenopodium quinoa; heat stress; high temperature; plant growth; pollen; BICOLOR L. MOENCH; HEAT-STRESS; SENSITIVE STAGES; CARBON-DIOXIDE; HARVEST INDEX; GRAIN-SORGHUM; TOLERANCE; VIABILITY; GENOTYPES; FIELD;
D O I
10.1111/jac.12302
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16 degrees C as a control treatment and 40/24 degrees C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat-stressed and non-heat-stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [1] Ecdysteroids of Quinoa seeds (Chenopodium quinoa Willd.)
    Zhu, N
    Kikuzaki, H
    Vastano, BC
    Nakatani, N
    Karwe, MV
    Rosen, RT
    Ho, CT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (05) : 2576 - 2578
  • [2] Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars
    Bertero, H. D.
    Ruiz, R. A.
    EUROPEAN JOURNAL OF AGRONOMY, 2008, 28 (03) : 186 - 194
  • [3] A microcalorimetric study of Chenopodium quinoa Willd. seed germination
    Sigstad, EE
    Prado, FE
    THERMOCHIMICA ACTA, 1999, 326 (1-2) : 159 - 164
  • [4] Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments
    Snowball, Richard
    Dhammu, Harmohinder S.
    D'Antuono, Mario Francesco
    Troldahl, David
    Biggs, Ian
    Thompson, Callen
    Warmington, Mark
    Pearce, Amanda
    Sharma, Darshan L.
    AGRONOMY-BASEL, 2022, 12 (09):
  • [5] Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)
    Nowak, Verena
    Du, Juan
    Charrondiere, U. Ruth
    FOOD CHEMISTRY, 2016, 193 : 47 - 54
  • [6] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Zurita-Silva, Andres
    Fuentes, Francisco
    Zamora, Pablo
    Jacobsen, Sven-Erik
    Schwember, Andres R.
    MOLECULAR BREEDING, 2014, 34 (01) : 13 - 30
  • [7] Effect of Soil Water Availability on Physiological Parameters, Yield, and Seed Quality in Four Quinoa Genotypes (Chenopodium quinoa Willd.)
    Valdivia-Cea, Walter
    Bustamante, Luis
    Jara, Jorge
    Fischer, Susana
    Holzapfel, Eduardo
    Wilckens, Rosemarie
    AGRONOMY-BASEL, 2021, 11 (05):
  • [8] Comparative effect of NaCl and seawater on germination of quinoa seed (Chenopodium quinoa willd)
    Brakez, Meryem
    Harrouni, M. C.
    Tachbibi, Naima
    Daoud, Salma
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2014, 26 (12): : 1091 - 1096
  • [9] THE EFFECTS OF VARIOUS ROW SPACING AND SOWING PERIODS ON THE PLANT PROPERTIES OF QUINOA (Chenopodium quinoa Willd.)
    Zulkadir, G.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2021, 19 (03): : 1857 - 1867
  • [10] Calorimetric studies of quinoa (Chenopodium quinoa Willd.) seed germination under saline stress conditions
    Schabes, FI
    Sigstad, EE
    THERMOCHIMICA ACTA, 2005, 428 (1-2) : 71 - 75