GROUP ACTIONS ON DENDRITES AND CURVES

被引:11
作者
Duchesne, Bruno [1 ,2 ]
Monod, Nicolas [3 ]
机构
[1] Univ Lorraine, Inst Elie Cartan, Nancy, France
[2] CNRS, Nancy, France
[3] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
dendrites; groups; rigidity; bounded cohomology; lattices; Tits alternative; dynamics; curves; BOUNDED COHOMOLOGY; ARITHMETIC GROUPS; FREE SUBGROUPS; FIXED-POINT; SPACES; SUPERRIGIDITY;
D O I
10.5802/aif.3209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish obstructions for groups to act by homeomorphisms on dendrites. For instance, lattices in higher rank simple Lie groups will always fix a point or a pair. The same holds for irreducible lattices in products of connected groups. Further results include a Tits alternative and a description of the topological dynamics. We briefly discuss to what extent our results hold for more general topological curves.
引用
收藏
页码:2277 / 2309
页数:33
相关论文
共 50 条
[31]   CONSTRUCTING GROUP ACTIONS ON QUASI-TREES AND APPLICATIONS TO MAPPING CLASS GROUPS [J].
Bestvina, Mladen ;
Bromberg, Ken ;
Fujiwara, Koji .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :1-64
[32]   A note on extending actions of infinitesimal group schemes [J].
Hoffmann, Daniel ;
Kowalski, Piotr .
JOURNAL OF ALGEBRA, 2016, 446 :275-290
[33]   Rigidity and geometricity for surface group actions on the circle [J].
Mann, Kathryn ;
Wolff, Maxime .
GEOMETRY & TOPOLOGY, 2024, 28 (05) :2345-2398
[34]   Dynamics of Weighted Translations Generated by Group Actions [J].
Chen, Chung-Chuan ;
Tabatabaie, Seyyed Mohammad ;
Mohammadi, Ali .
FILOMAT, 2020, 34 (07) :2131-2139
[35]   Nonhomogeneous locally free actions of the affine group [J].
Asaoka, Masayuki .
ANNALS OF MATHEMATICS, 2012, 175 (01) :1-21
[36]   UNIFORMLY LIPSCHITZIAN GROUP ACTIONS ON HYPERCONVEX SPACES [J].
Wisnicki, Andrzej ;
Wosko, Jacek .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) :3813-3824
[37]   Dynamical and cohomological obstructions to extending group actions [J].
Mann, Kathryn ;
Nariman, Sam .
MATHEMATISCHE ANNALEN, 2020, 377 (3-4) :1313-1338
[38]   Group actions on cluster algebras and cluster categories [J].
Paquette, Charles ;
Schiffler, Ralf .
ADVANCES IN MATHEMATICS, 2019, 345 :161-221
[39]   Superexpanders from group actions on compact manifolds [J].
de Laat, Tim ;
Vigolo, Federico .
GEOMETRIAE DEDICATA, 2019, 200 (01) :287-302
[40]   HARMONIC OPERATORS OF ERGODIC QUANTUM GROUP ACTIONS [J].
Amini, Massoud ;
Kalantar, Mehrdad ;
Moakhar, Mohammad S. M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) :4325-4333