Prediction of Equivalent Steady-State Chloride Diffusion Coefficients

被引:2
|
作者
Ghosh, Pratanu [1 ]
Hammond, Alex [1 ]
Tikalsky, Paul J. [2 ]
机构
[1] Univ Utah, Mat & Struct Res Lab, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT USA
关键词
chloride diffusion; corrosion; joule effect; migration rate; CONCRETE;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an approach for determining the chloride migration rate of hardened concrete by applying fundamental electrochemistry for different cementitious mixtures using the measurements from the chloride-ion penetration test (CIPT) data following ASTM C1202 specifications. The steady-state condition is verified by comparing the numerical values of chloride migration rates during 5, 30, and 360 minutes of testing. Three different theoretical approaches-Nernst-Plank, Nernst-Einstein, and the Zhang-Gjorv method-were applied to obtain the equivalent steady-state diffusion coefficients for different cementitious materials. These results are compared with the diffusion coefficients obtained from Berke's empirical equation using CIPT data. These methods for the computation of diffusion coefficients include both the joule effect and temperature dependency and eliminate the need for other extended migration tests to obtain the steady-state conditions. Overall, this research presents a reliable method of determining the chloride migration rate for diffusion coefficient prediction.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 50 条
  • [21] Maximal Lactate Steady-State Prediction
    Figueira, Tiago R.
    Simoes, Herbert G.
    Denadai, Benedito S.
    SPORTS MEDICINE, 2010, 40 (02) : 179 - 180
  • [22] Steady-state solidification of aqueous ammonium chloride
    Peppin, S. S. L.
    Huppert, Herbert E.
    Worster, M. Grae
    JOURNAL OF FLUID MECHANICS, 2008, 599 : 465 - 476
  • [23] Modeling an equivalent b-value in diffusion-weighted steady-state free precession
    Tendler, Benjamin C.
    Foxley, Sean
    Cottaar, Michiel
    Jbabdi, Saad
    Miller, Karla L.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (02) : 873 - 884
  • [24] Research on an equivalent model for steady-state random vibrations
    Li, Da-Wang
    Wang, Dong-Wei
    Jiang, Xiao-Dong
    Chen, Li-Xi
    Advances in Structural Engineering:Theory and Applications Vols 1 and 2, 2006, : 609 - 612
  • [25] Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients
    Ruan, WH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (02) : 558 - 578
  • [26] RANDOM STEADY-STATE DIFFUSION PROBLEM .2. RANDOM SOLUTIONS TO NONLINEAR, INHOMOGENEOUS, STEADY-STATE DIFFUSION PROBLEMS
    BECUS, GA
    COZZARELLI, FA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) : 148 - 158
  • [28] INFLUENCE OF IMBEDDED PARTICLES ON STEADY-STATE DIFFUSION
    BELL, GE
    CRANK, J
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1974, 70 (07): : 1259 - 1273
  • [29] STEADY-STATE VERTICAL TURBULENT DIFFUSION OF RADON
    COHEN, LD
    KRABLIN, R
    BARR, S
    NEWSTEIN, H
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (15): : 2654 - &
  • [30] NEW APPARATUS FOR MEASURING STEADY-STATE DIFFUSION
    MIKATI, N
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1987, 58 (04): : 604 - 608