Cooling Delays from Iron Sedimentation and Iron Inner Cores in White Dwarfs

被引:15
作者
Caplan, M. E. [1 ]
Freeman, I. F. [1 ]
Horowitz, C. J. [2 ,3 ]
Cumming, A. [4 ,5 ]
Bellinger, E. P. [6 ]
机构
[1] Illinois State Univ, Dept Phys, Normal, IL 61790 USA
[2] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[5] McGill Univ, McGill Space Inst, Montreal, PQ H3A 2T8, Canada
[6] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, Aarhus, Denmark
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
PHASE-SEPARATION; CRYSTALLIZATION; NE-22;
D O I
10.3847/2041-8213/ac1f99
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Do white dwarfs have inner cores made of iron? Neutron-rich nuclei like Fe-56 experience a net gravitational force and sediment toward the core. Using new phase diagrams and molecular dynamics simulations, we show that Fe-56 should separate into mesoscopic Fe-rich crystallites due to its large charge relative to the background. At solar abundances, these crystallites rapidly precipitate and form an inner core of order 100 km and 10(-3) M (circle dot) that may be detectable with asteroseismology. Associated cooling delays could be up to a Gyr for low-mass white dwarfs but are only similar to 0.1 Gyr for massive white dwarfs, so while this mechanism may contribute to the Q-branch the heating is insufficient to fully explain it.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Multi-gigayear White Dwarf Cooling Delays from Clustering-enhanced Gravitational Sedimentation [J].
Bauer, Evan B. ;
Schwab, Josiah ;
Bildsten, Lars ;
Sihao Cheng .
ASTROPHYSICAL JOURNAL, 2020, 902 (02)
[2]   Gravitational settling of 22Ne in liquid white dwarf interiors [J].
Bildsten, L ;
Hall, DM .
ASTROPHYSICAL JOURNAL, 2001, 549 (02) :L219-L223
[3]   22Ne Phase Separation as a Solution to the Ultramassive White Dwarf Cooling Anomaly [J].
Blouin, Simon ;
Daligault, Jerome ;
Saumon, Didier .
ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (01)
[4]   Toward precision cosmochronology: A new C/O phase diagram for white dwarfs [J].
Blouin, Simon ;
Daligault, Jerome ;
Saumon, Didier ;
Bedard, Antoine ;
Brassard, Pierre .
ASTRONOMY & ASTROPHYSICS, 2020, 640
[5]   A highly magnetized and rapidly rotating white dwarf as small as the Moon [J].
Caiazzo, Ilaria ;
Burdge, Kevin B. ;
Fuller, James ;
Heyl, Jeremy ;
Kulkarni, S. R. ;
Prince, Thomas A. ;
Richer, Harvey B. ;
Schwab, Josiah ;
Andreoni, Igor ;
Bellm, Eric C. ;
Drake, Andrew ;
Duev, Dmitry A. ;
Graham, Matthew J. ;
Helou, George ;
Mahabal, Ashish A. ;
Masci, Frank J. ;
Smith, Roger ;
Soumagnac, Maayane T. .
NATURE, 2021, 595 (7865) :39-+
[6]   Forever young white dwarfs: When stellar ageing stops [J].
Camisassa, Maria E. ;
Althaus, Leandro G. ;
Torres, Santiago ;
Corsico, Alejandro H. ;
Rebassa-Mansergas, Alberto ;
Tremblay, Pier-Emmanuel ;
Cheng, Sihao ;
Raddi, Roberto .
ASTRONOMY & ASTROPHYSICS, 2021, 649 (649)
[7]   Polycrystalline Crusts in Accreting Neutron Stars [J].
Caplan, M. ;
Cumming, Andrew ;
Berry, D. ;
Horowitz, C. ;
Mckinven, R. .
ASTROPHYSICAL JOURNAL, 2018, 860 (02)
[8]   Black dwarf supernova in the far future [J].
Caplan, M. E. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (04) :4357-4362
[9]   Neon Cluster Formation and Phase Separation during White Dwarf Cooling [J].
Caplan, M. E. ;
Horowitz, C. J. ;
Cumming, A. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 902 (02)
[10]   A Cooling Anomaly of High-mass White Dwarfs [J].
Cheng, Sihao ;
Cummings, Jeffrey D. ;
Menard, Brice .
ASTROPHYSICAL JOURNAL, 2019, 886 (02)