Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection

被引:284
作者
Ma, Yufei [1 ]
He, Ying [1 ]
Tong, Yao [1 ]
Yu, Xin [1 ]
Tittel, Frank K. [2 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Tunable Laser, Harbin 150001, Heilongjiang, Peoples R China
[2] Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 24期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
QUANTUM CASCADE LASER; PHOTOACOUSTIC-SPECTROSCOPY; MICROSCOPY; SENSOR;
D O I
10.1364/OE.26.032103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A gas sensing method based on quartz-tuning-fork enhanced photothermal spectroscopy (QEPTS) is reported in this paper. Unlike usually used thermally sensitive elements, a sharply resonant quartz-tuning-fork with the capability of enhanced mechanical resonance was used to amplify the photothermal signal level. Acetylene (C2H2) detection was used to verify the QEPTS sensor performance. The measured results indicate a minimum detection limit (MDL) of 718 ppb and a normalized noise equivalent absorption coefficient (NNEA) of 7.63 x 10(-9) cm WA/root Hz. This performance demonstrates that QEPTS can be an ultra-high sensitive technique for gas detection and shows superiority when compared to usually used methods of tunable diode laser absorption spectroscopy (TDLAS) and quartz-enhanced photoacoustic spectroscopy (QEPAS). Furthermore, when compared to an optical detector, especially a costly mercury cadmium telluride (MCT) detector with cryogenic cooling used in TDLAS, a quartz-tuning-fork is much cheap and tiny. Besides, compared to the QEPAS technique, QEPTS is a non-contact measurement technique and therefore can be used for standoff and remote trace gas detection. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:32103 / 32110
页数:8
相关论文
共 29 条
  • [1] Femto-Newton force sensitivity quartz tuning fork sensor
    Barbic, Mladen
    Eliason, Lowell
    Ranshaw, James
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2007, 136 (02) : 564 - 566
  • [2] Intracavity quartz-enhanced photoacoustic sensor
    Borri, S.
    Patimisco, P.
    Galli, I.
    Mazzotti, D.
    Giusfredi, G.
    Akikusa, N.
    Yamanishi, M.
    Scamarcio, G.
    De Natale, P.
    Spagnolo, V.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (09)
  • [3] Terahertz quartz enhanced photo-acoustic sensor
    Borri, S.
    Patimisco, P.
    Sampaolo, A.
    Beere, H. E.
    Ritchie, D. A.
    Vitiello, M. S.
    Scamarcio, G.
    Spagnolo, V.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (02)
  • [4] Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor
    Edwards, H
    Taylor, L
    Duncan, W
    Melmed, AJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) : 980 - 984
  • [5] High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
    Giessibl, FJ
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (26) : 3956 - 3958
  • [6] The HITRAN2016 molecular spectroscopic database
    Gordon, I. E.
    Rothman, L. S.
    Hill, C.
    Kochanov, R. V.
    Tan, Y.
    Bernath, P. F.
    Birk, M.
    Boudon, V.
    Campargue, A.
    Chance, K. V.
    Drouin, B. J.
    Flaud, J. -M.
    Gamache, R. R.
    Hodges, J. T.
    Jacquemart, D.
    Perevalov, V. I.
    Perrin, A.
    Shine, K. P.
    Smith, M. -A. H.
    Tennyson, J.
    Toon, G. C.
    Tran, H.
    Tyuterev, V. G.
    Barbe, A.
    Csaszar, A. G.
    Devi, V. M.
    Furtenbacher, T.
    Harrison, J. J.
    Hartmann, J. -M.
    Jolly, A.
    Johnson, T. J.
    Karman, T.
    Kleiner, I.
    Kyuberis, A. A.
    Loos, J.
    Lyulin, O. M.
    Massie, S. T.
    Mikhailenko, S. N.
    Moazzen-Ahmadi, N.
    Mueller, H. S. P.
    Naumenko, O. V.
    Nikitin, A. V.
    Polyansky, O. L.
    Rey, M.
    Rotger, M.
    Sharpe, S. W.
    Sung, K.
    Starikova, E.
    Tashkun, S. A.
    Vander Auwera, J.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 : 3 - 69
  • [7] Fundamental limits to force detection using quartz tuning forks
    Grober, RD
    Acimovic, J
    Schuck, J
    Hessman, D
    Kindlemann, PJ
    Hespanha, J
    Morse, AS
    Karrai, K
    Tiemann, I
    Manus, S
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (07) : 2776 - 2780
  • [8] A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber
    He, Qixin
    Zheng, Chuantao
    Liu, Huifang
    Li, Bin
    Wang, Yiding
    Tittel, Frank K.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2016, 75 : 93 - 99
  • [9] Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy
    He, Ying
    Ma, Yufei
    Tong, Yao
    Yu, Xin
    Peng, Zhenfang
    Gao, Jing
    Tittel, Frank K.
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (24)
  • [10] Quartz enhanced photoacoustic spectroscopy with a 3.38 μm antimonide distributed feedback laser
    Jahjah, Mohammad
    Belahsene, Sofiane
    Naehle, Lars
    Fischer, Marc
    Koeth, Johannes
    Rouillard, Yves
    Vicet, Aurore
    [J]. OPTICS LETTERS, 2012, 37 (13) : 2502 - 2504