Mesoporous CoO/Co-N-C nanofibers as efficient cathode catalysts for Li-O2 batteries

被引:54
作者
He, Biao [1 ]
Wang, Jun [1 ]
Fan, Yuqi [2 ]
Jiang, Yuliang [1 ]
Zhai, Yanjie [1 ]
Wang, Yu [1 ]
Huang, Qishun [1 ]
Dang, Feng [1 ]
Zhang, Zidong [1 ]
Wang, Ning [3 ]
机构
[1] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[2] Shandong Normal Univ, Inst Environm & Ecol, Jinan 250014, Shandong, Peoples R China
[3] Hainan Univ, State Key Lab Marine Resource Utilizat South Chin, Haikou 570228, Hainan, Peoples R China
关键词
OXYGEN-REDUCTION REACTION; DOPED CARBON; BIFUNCTIONAL ELECTROCATALYST; POROUS CARBON; LONG-LIFE; NITROGEN; GRAPHENE; NANOPARTICLES; PERFORMANCE; EVOLUTION;
D O I
10.1039/c8ta07185c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To meet the needs of promising rechargeable Li-O-2 batteries as future candidates for power storage, designing cathodes with high efficiency, low cost and good durability is crucial in order to conquer the difficulties of the battery systems. Herein, we propose an effective method employing the electrospinning technique, followed by one-step annealing, to obtain CoO and Co nanoparticles decorated with nitrogen/oxygen (N/O) dual-doping carbon nanofibers for cathode catalysts in Li-O-2 batteries. Integration of the mesoporous nanostructure and large specific surface area, homogeneous N/O dual-doping, decoration with large irregular CoO species and encapsulation of small Co nanoparticles within a graphitic shell are thought to be responsible for the following properties: controlled side reactions, optimized electrochemical performance with an outstanding capacity of 8798.6 mA h g(-1) and an excellent reversibility of more than 140 cycles at a fixed capacity of 600 mA h g(-1). This work provides a new method for obtaining carbon-based metal oxides/metal nanomaterials as efficient cathode catalysts for Li-O-2 battery applications.
引用
收藏
页码:19075 / 19084
页数:10
相关论文
共 74 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
[3]  
AHN SH, 2017, ADV MATER, V29, DOI DOI 10.1002/ADMA.201606534
[4]   A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction [J].
An, Li ;
Huang, Weifeng ;
Zhang, Nanlin ;
Chen, Xin ;
Xia, Dingguo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (01) :62-65
[5]   Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Liu, Cong ;
Phillips, Patrick ;
Yasaei, Poya ;
Behranginia, Amirhossein ;
Zapol, Peter ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
ACS NANO, 2016, 10 (02) :2167-2175
[6]   The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies [J].
Assary, Rajeev S. ;
Lu, Jun ;
Du, Peng ;
Luo, Xiangyi ;
Zhang, Xiaoyi ;
Ren, Yang ;
Curtiss, Larry A. ;
Amine, Khalil .
CHEMSUSCHEM, 2013, 6 (01) :51-55
[7]   Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping [J].
Bayatsarmadi, Bita ;
Zheng, Yao ;
Tang, Youhong ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SMALL, 2016, 12 (27) :3703-3711
[8]  
Boutonnet M., 2016, NANOCATALYSTS SYNTHE, P211
[9]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[10]   Tips-Bundled Pt/Co3O4 Nanowires with Directed Peripheral Growth of Li2O2 as Efficient Binder/Carbon-Free Catalytic Cathode for Lithium-Oxygen Battery [J].
Cao, Jingyi ;
Liu, Shuangyu ;
Xie, Jian ;
Zhang, Shichao ;
Cao, Gaoshao ;
Zhao, Xinbing .
ACS CATALYSIS, 2015, 5 (01) :241-245