Deep learning on fundus images detects glaucoma beyond the optic disc

被引:51
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
收藏
页数:12
相关论文
共 61 条
[51]  
Simonyan K, 2014, WORKSH INT C LEARN R
[52]  
Sivaswamy J, 2014, I S BIOMED IMAGING, P53, DOI 10.1109/ISBI.2014.6867807
[53]   Glaucoma screening: where are we and where do we need to go? [J].
Tan, Nicholas Y. Q. ;
Friedman, David S. ;
Stalmans, Ingeborg ;
Ahmed, Iqbal Ike K. ;
Sng, Chelvin C. A. .
CURRENT OPINION IN OPHTHALMOLOGY, 2020, 31 (02) :91-100
[54]   Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040 A Systematic Review and Meta-Analysis [J].
Tham, Yih-Chung ;
Li, Xiang ;
Wong, Tien Y. ;
Quigley, Harry A. ;
Aung, Tin ;
Cheng, Ching-Yu .
OPHTHALMOLOGY, 2014, 121 (11) :2081-2090
[55]   A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs [J].
Thompson, Atalie C. ;
Jammal, Alessandro A. ;
Medeiros, Felipe A. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 201 :9-18
[56]   Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes [J].
Ting, Daniel Shu Wei ;
Cheung, Carol Yim-Lui ;
Lim, Gilbert ;
Tan, Gavin Siew Wei ;
Quang, Nguyen D. ;
Gan, Alfred ;
Hamzah, Haslina ;
Garcia-Franco, Renata ;
Yeo, Ian Yew San ;
Lee, Shu Yen ;
Wong, Edmund Yick Mun ;
Sabanayagam, Charumathi ;
Baskaran, Mani ;
Ibrahim, Farah ;
Tan, Ngiap Chuan ;
Finkelstein, Eric A. ;
Lamoureux, Ecosse L. ;
Wong, Ian Y. ;
Bressler, Neil M. ;
Sivaprasad, Sobha ;
Varma, Rohit ;
Jonas, Jost B. ;
He, Ming Guang ;
Cheng, Ching-Yu ;
Cheung, Gemmy Chui Ming ;
Aung, Tin ;
Hsu, Wynne ;
Lee, Mong Li ;
Wong, Tien Yin .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2211-2223
[57]   Primary open-angle glaucoma [J].
Weinreb, RN ;
Khaw, PT .
LANCET, 2004, 363 (9422) :1711-1720
[58]   The Pathophysiology and Treatment of Glaucoma A Review [J].
Weinreb, Robert N. ;
Aung, Tin ;
Medeiros, Felipe A. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (18) :1901-1911
[59]  
Wong CL, 2018, INVEST OPHTH VIS SCI, V59
[60]   Visualizing and Understanding Convolutional Networks [J].
Zeiler, Matthew D. ;
Fergus, Rob .
COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 :818-833