Deep learning on fundus images detects glaucoma beyond the optic disc

被引:51
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
收藏
页数:12
相关论文
共 61 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   A deep learning model for the detection of both advanced and early glaucoma using fundus photography [J].
Ahn, Jin Mo ;
Kim, Sangsoo ;
Ahn, Kwang-Sung ;
Cho, Sung-Hoon ;
Lee, Kwan Bok ;
Kim, Ungsoo Samuel .
PLOS ONE, 2018, 13 (11)
[3]  
ALBER M, 2018, INNVESTIGATE NEURAL
[4]   Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma [J].
Angel Zapata, Miguel ;
Royo-Fibla, Didac ;
Font, Octavi ;
Ignacio Vela, Jose ;
Marcantonio, Ivanna ;
Ulises Moya-Sanchez, Eduardo ;
Sanchez-Perez, Abraham ;
Garcia-Gasulla, Dario ;
Cortes, Ulises ;
Ayguade, Eduard ;
Labarta, Jesus .
CLINICAL OPHTHALMOLOGY, 2020, 14 :419-429
[5]  
[Anonymous], 2017, BRIT J OPHTHALMOL, V101, P1, DOI [10.1136/bjophthalmol-2016-EGSguideline.001, DOI 10.1136/BJOPHTHALMOL-2016-EGSGUIDELINE.001]
[6]   Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pacheco, Katia D. ;
Freund, David E. ;
Kong, Jun ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2018, 136 (12) :1359-1366
[7]   Identification of the optic nerve head with genetic algorithms [J].
Carmona, Enrique J. ;
Rincon, Mariano ;
Garcia-Feijoo, Julian ;
Martinez-de-la-Casa, Jose M. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 43 (03) :243-259
[8]   Automatic Identification of Glaucoma Using Deep Learning Methods [J].
Cerentini, Allan ;
Welfer, Daniel ;
d'Ornellas, Marcos Cordeiro ;
Pereira Haygert, Carlos Jesus ;
Dotto, Gustavo Nogara .
MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 :318-321
[9]  
Chen XY, 2015, IEEE ENG MED BIO, P715, DOI 10.1109/EMBC.2015.7318462
[10]   Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs [J].
Christopher, Mark ;
Beighith, Akram ;
Bowd, Christopher ;
Proudfoot, James A. ;
Goldbaum, Michael H. ;
Weinreb, Robert N. ;
Girkin, Christopher A. ;
Liebmann, Jeffrey M. ;
Zangwill, Linda M. .
SCIENTIFIC REPORTS, 2018, 8