Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets

被引:1582
作者
Michalek, Ryan D. [1 ,2 ,3 ]
Gerriets, Valerie A. [1 ]
Jacobs, Sarah R. [1 ,2 ,3 ]
Macintyre, Andrew N. [1 ,2 ,3 ]
MacIver, Nancie J. [1 ,4 ]
Mason, Emily F. [1 ]
Sullivan, Sarah A. [2 ]
Nichols, Amanda G. [1 ]
Rathmell, Jeffrey C. [1 ,2 ,3 ]
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Sarah W Stedman Nutr & Metab Ctr, Durham, NC 27710 USA
[4] Duke Univ, Med Ctr, Dept Pediat, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
KINASE; DIFFERENTIATION; ACTIVATION; DISEASE; GROWTH; MEMORY;
D O I
10.4049/jimmunol.1003613
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases. The Journal of Immunology, 2011, 186: 3299-3303.
引用
收藏
页码:3299 / 3303
页数:5
相关论文
共 50 条
  • [31] Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4+ T Cells
    Zou, Ying
    Li, Wen-Yang
    Wan, Zheng
    Zhao, Bing
    He, Zhi-Wei
    Wu, Zhu-Guo
    Huang, Guo-Liang
    Wang, Jian
    Li, Bin-Bin
    Lu, Yang-Jia
    Ding, Cong-Cong
    Chi, Hong-Gang
    Zheng, Xue-Bao
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [32] Metformin and 2-Deoxyglucose Collaboratively Suppress Human CD4+ T Cell Effector Functions and Activation-Induced Metabolic Reprogramming
    Tan, Stefanie Y.
    Kelkar, Yogeshwar
    Hadjipanayis, Angela
    Shipstone, Arun
    Wynn, Thomas A.
    Hall, J. Perry
    JOURNAL OF IMMUNOLOGY, 2020, 205 (04) : 957 - 967
  • [33] Human Endothelial Cells Modulate CD4+ T Cell Populations and Enhance Regulatory T cell Suppressive Capacity
    Lim, Wen Chean
    Olding, Michael
    Healy, Eugene
    Millar, Timothy M.
    FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [34] Lamtor1 Is Critically Required for CD4+ T Cell Proliferation and Regulatory T Cell Suppressive Function
    Hosokawa, Takashi
    Kimura, Tetsuya
    Nada, Shigeyuki
    Okuno, Tatsusada
    Ito, Daisuke
    Kang, Sujin
    Nojima, Satoshi
    Yamashita, Kazuya
    Nakatani, Takeshi
    Hayama, Yoshitomo
    Kato, Yasuhiro
    Kinehara, Yuhei
    Nishide, Masayuki
    Mikami, Norihisa
    Koyama, Syohei
    Takamatsu, Hyota
    Okuzaki, Daisuke
    Ohkura, Naganari
    Sakaguchi, Shimon
    Okada, Masato
    Kumanogoh, Atsushi
    JOURNAL OF IMMUNOLOGY, 2017, 199 (06) : 2008 - 2019
  • [35] CD9 expression in porcine blood CD4+ T cells delineates two subsets with phenotypic characteristics of central and effector memory cells
    Alvarez, Belen
    Revilla, Concepcion
    Moreno, Sara
    Jimenez-Marin, Angeles
    Ramos, Elena
    Riva, Paloma Martinez de la
    Poderoso, Teresa
    Garrido, Juan J.
    Ezquerra, Angel
    Dominguez, Javier
    DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 2022, 133
  • [36] Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct
    Burel, Julie G.
    Apte, Simon H.
    Groves, Penny L.
    McCarthy, James S.
    Doolan, Denise L.
    JCI INSIGHT, 2017, 2 (03)
  • [37] Essential Role for Retinoic Acid in the Promotion of CD4+ T Cell Effector Responses via Retinoic Acid Receptor Alpha
    Hall, Jason A.
    Cannons, Jennifer L.
    Grainger, John R.
    Dos Santos, Liliane M.
    Hand, Timothy W.
    Naik, Shruti
    Wohlfert, Elizabeth A.
    Chou, David B.
    Oldenhove, Guillaume
    Robinson, Melody
    Grigg, Michael E.
    Kastenmayer, Robin
    Schwartzberg, Pamela L.
    Belkaid, Yasmine
    IMMUNITY, 2011, 34 (03) : 435 - 447
  • [38] CD98hc regulates the development of experimental colitis by controlling effector and regulatory CD4+ T cells
    Bhuyan, Zaied Ahmed
    Arimochi, Hideki
    Nishida, Jun
    Kataoka, Keiko
    Kurihara, Takeshi
    Ishifune, Chieko
    Tsumura, Hideki
    Ito, Morihiro
    Ito, Yasuhiko
    Kitamura, Akiko
    Yasutomo, Koji
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 444 (04) : 628 - 633
  • [39] CD4 effector T cell subsets in the response to influenza:: Heterogeneity, migration, and function
    Román, E
    Miller, E
    Harmsen, A
    Wiley, J
    von Andrian, UH
    Huston, G
    Swain, SL
    JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 196 (07) : 957 - 968
  • [40] Altered Effector CD4+ T Cell Function in IL-21R-/- CD4+ T Cell-Mediated Graft-Versus-Host Disease
    Oh, Iekuni
    Ozaki, Katsutoshi
    Meguro, Akiko
    Hatanaka, Keiko
    Kadowaki, Masanori
    Matsu, Haruko
    Tatara, Raine
    Sato, Kazuya
    Iwakura, Yoichiro
    Nakae, Susumu
    Sudo, Katsuko
    Teshima, Takanori
    Leonard, Warren J.
    Ozawa, Keiya
    JOURNAL OF IMMUNOLOGY, 2010, 185 (03) : 1920 - 1926