Selective laser melting of the Al0.3CoCrFeNiCu high-entropy alloy: Processing parameters, microstructure and mechanical properties

被引:29
|
作者
Yuan, Biliang [1 ]
Li, Chuanqiang [1 ]
Dong, Yong [1 ]
Yang, Yang [2 ]
Zhang, Peng [1 ]
Zhang, Zhengrong [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Electromech Engn, Guangdong Prov Key Lab Minimally Invas Surg Instru, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Selective laser melting; High-entropy alloy; Microstructure; Mechanical properties; Defects; BEHAVIOR;
D O I
10.1016/j.matdes.2022.110847
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The as-printed Al0.3CoCrFeNiCu high-entropy alloy (HEA) was fabricated from gas-atomized powders by selective laser melting (SLM) with the tailored printing parameters. The processing parameters, microstructural characteristics, mechanical properties and formed defects of the SLM-processed Al0.3CoCrFeNiCu HEA were examined in detail. The SLM-processed HEAs presented a simple disordered face centered cubic solid solution with columnar grains growing along the building direction and exhibiting a (001) preferred orientation. Dendritic-segregation, a common phenomenon occurring in as-cast counterparts was eliminated, thus providing a significant method to form a single-phase solid solution. The cellular structure in the columnar grains germinated perpendicular to the boundary of molten pools. In addition, dislocations induced by internal stress were observed. Accordingly, the SLM-processed Al0.3CoCrFeNiCu HEA exhibited superior microhardness , compressive strength. Finally, two types of defects were found in this SLM alloy, including irregular holes and hot cracks. The latter occurring on solid-liquid interface of molten pool were retarded by grain boundaries and then turned into muti-branches. Nevertheless, no crack-free sample could be prepared even though the printing parameters were optimized to achieve a high relative density of 99.08%, indicating this HEA was not suitable for SLM technology to prepare. (C) 2022 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:15
相关论文
empty
未找到相关数据