Relative equilibrium in the three-body problem with a rigid body

被引:2
|
作者
Fanny, C [1 ]
Badaoui, E [1 ]
机构
[1] Univ Paris 06, UFR Mecan, Modelisat Mecan Lab, F-75230 Paris 05, France
来源
关键词
relative equilibrium; three-body problem; rigid body; oblate ball; elongated ball;
D O I
10.1023/A:1008225105537
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the three-body problem, where two bodies are punctual and the third is rigid, we prove the existence of some relative equilibrium configurations where the rigid body is either an homogeneous ball, an oblate or an elongated ball. In particular, we found conditions of relative equilibrium of Euler and Lagrange type and several families of relative equilibrium configurations, where the triangle of the two punctual bodies and the mass center of the rigid body is isosceles or having unequal sides.
引用
收藏
页码:293 / 315
页数:23
相关论文
共 50 条
  • [21] Relative equilibria of the restricted three-body problem in curved spaces
    Regina Martínez
    Carles Simó
    Celestial Mechanics and Dynamical Astronomy, 2017, 128 : 221 - 259
  • [22] Linear stability of relative equilibria in the charged three-body problem
    Alfaro, Felipe
    Perez-Chavela, Emesto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) : 1923 - 1944
  • [23] Symmetries, Reduction and Relative Equilibria for a Gyrostat in the Three-body Problem
    F. Mondéjar
    A. Vigueras
    S. Ferrer
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 45 - 50
  • [24] Symmetries, reduction and relative equilibria for a gyrostat in the three-body problem
    Mondéjar, F
    Vigueras, A
    Ferrer, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 81 (1-2): : 45 - 50
  • [25] The parabolic three-body problem
    Beaugé, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 88 (01): : 51 - 68
  • [26] Three-Body Coulomb Problem
    Combescot, R.
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [27] On the three-body problem.
    Pylarinos, O
    MATHEMATISCHE ANNALEN, 1937, 114 : 150 - 160
  • [28] A trilinear three-body problem
    Lodge, G
    Walsh, JA
    Kramer, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (08): : 2141 - 2155
  • [29] Poincare and the Three-Body Problem
    Chenciner, Alain
    HENRI POINCARE, 1912-2012, 2015, 67 : 51 - 149
  • [30] The Parabolic Three-Body Problem
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2004, 88 : 51 - 68