Relative equilibrium in the three-body problem with a rigid body

被引:2
|
作者
Fanny, C [1 ]
Badaoui, E [1 ]
机构
[1] Univ Paris 06, UFR Mecan, Modelisat Mecan Lab, F-75230 Paris 05, France
关键词
relative equilibrium; three-body problem; rigid body; oblate ball; elongated ball;
D O I
10.1023/A:1008225105537
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the three-body problem, where two bodies are punctual and the third is rigid, we prove the existence of some relative equilibrium configurations where the rigid body is either an homogeneous ball, an oblate or an elongated ball. In particular, we found conditions of relative equilibrium of Euler and Lagrange type and several families of relative equilibrium configurations, where the triangle of the two punctual bodies and the mass center of the rigid body is isosceles or having unequal sides.
引用
收藏
页码:293 / 315
页数:23
相关论文
共 50 条
  • [1] Relative Equilibrium in the Three-Body Problem with a Rigid Body
    Cosson Fanny
    Elmabsout Badaoui
    Celestial Mechanics and Dynamical Astronomy, 1997, 69 : 293 - 315
  • [2] Lagrangian relative equilibria for a gyrostat in the three-body problem
    Vera Lopez, Juan Antonio
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2009, 7 (04): : 677 - 689
  • [3] On the equilibria of the restricted three-body problem with a triaxial rigid body, II: prolate primary
    Alrebdi, H. I.
    Dubeibe, Fredy L.
    Zotos, Euaggelos E.
    RESULTS IN PHYSICS, 2022, 38
  • [4] Symmetries, Reduction and Relative Equilibria for a Gyrostat in the Three-body Problem
    F. Mondéjar
    A. Vigueras
    S. Ferrer
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 45 - 50
  • [5] Symmetries, reduction and relative equilibria for a gyrostat in the three-body problem
    Mondéjar, F
    Vigueras, A
    Ferrer, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 81 (1-2) : 45 - 50
  • [6] The rectilinear three-body problem
    Victor Vladimirovich Orlov
    Anna V. Petrova
    Kiyotaka Tanikawa
    Masaya M. Saito
    Alija I. Martynova
    Celestial Mechanics and Dynamical Astronomy, 2008, 100 : 93 - 120
  • [7] The Parabolic Three-Body Problem
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2004, 88 : 51 - 68
  • [8] The rectilinear three-body problem
    Orlov, Victor Vladimirovich
    Petrova, Anna V.
    Tanikawa, Kiyotaka
    Saito, Masaya M.
    Martynova, Alija I.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 100 (02) : 93 - 120
  • [9] The parabolic three-body problem
    Beaugé, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 88 (01) : 51 - 68
  • [10] THE THREE BODY PROBLEM WITH A RIGID BODY: EULERIAN EQUILIBRIA AND STABILITY
    Vera, J. A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 695 - 712