Towards self-powered sensing using nanogenerators for automotive systems

被引:71
|
作者
Askari, Hassan [1 ]
Hashemi, E. [1 ]
Khajepour, A. [1 ]
Khamesee, M. B. [1 ]
Wang, Z. L. [2 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
Self-powered sensing; Nanogenerators; Automotive systems; Energy harvesting; ZNO NANOWIRE NANOGENERATOR; LIQUID-LEVEL SENSOR; METAL-ORGANIC FRAMEWORK; REAL-TIME ESTIMATION; TRIBOELECTRIC NANOGENERATOR; PYROELECTRIC NANOGENERATORS; MECHANICAL ENERGY; GAS SENSOR; PIEZOELECTRIC NANOWIRE; VEHICLE NAVIGATION;
D O I
10.1016/j.nanoen.2018.09.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Harvesting energy from the working environment of vehicles is important for wirelessly monitoring their operation conditions and safety. This review aims at reporting different sensory and energy harvesting technologies developed for automotive and active safety systems. A few dominant sensing and power harvesting mechanisms in automotive systems are illustrated, then, triboelectric, piezoelectric and pyroelectric nanogenerators, and their potential for utilization in automotive systems are discussed considering their high power density, flexibility, different operating modes, and cost in comparison with other mechanisms. Various ground vehicles' sensing mechanisms including position, thermal, pressure, chemical and gas composition, and pressure sensors are presented. A few novel types self-powered sensing mechanisms are presented for each of the abovementioned sensor categories using nanogenerators. The last section includes the automotive systems and subsystems, which have the potential to be used for energy harvesting, such as suspension and tires. The potential of nanogenerators for developing new self-powered sensors for automotive applications, which in the near future, will be an indispensable part of the active safety systems in production cars, is also discussed in this review article.
引用
收藏
页码:1003 / 1019
页数:17
相关论文
共 50 条
  • [1] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, 9
  • [2] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, (04) : 81 - 99
  • [3] Nanogenerators for Self-Powered Gas Sensing
    Wen, Zhen
    Shen, Qingqing
    Sun, Xuhui
    NANO-MICRO LETTERS, 2017, 9 (04)
  • [4] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, 9 (04) : 81 - 99
  • [5] Application of nanogenerators in self-powered microfluidic systems
    Zhao, Luming
    Zhang, Hangyu
    Liu, Dong
    Zou, Yang
    Li, Zhou
    Liu, Bo
    NANO ENERGY, 2024, 123
  • [6] Self-Powered Sensors and Systems Based on Nanogenerators
    Wu, Zhiyi
    Cheng, Tinghai
    Wang, Zhong Lin
    SENSORS, 2020, 20 (10)
  • [7] Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (22) : 3553 - 3567
  • [8] Self-powered fall detection system using pressure sensing triboelectric nanogenerators
    Jeon, Seung-Bae
    Nho, Young-Hoon
    Park, Sang-Jae
    Kim, Weon-Guk
    Tcho, Il-Woong
    Kim, Daewon
    Kwon, Dong-Soo
    Choi, Yang-Kyu
    NANO ENERGY, 2017, 41 : 139 - 147
  • [9] Nanogenerators for self-powered nanosystems
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [10] Revolutionizing self-powered robotic systems with triboelectric nanogenerators
    Hajra, Sugato
    Panda, Swati
    Khanberh, Hamideh
    Vivekananthan, Venkateswaran
    Chamanehpour, Elham
    Mishra, Yogendra Kumar
    Kim, Hoe Joon
    NANO ENERGY, 2023, 115