Clustered SVD strategies in latent semantic indexing

被引:33
|
作者
Gao, J [1 ]
Zhang, J [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lab High Performance Sci Comp & Comp Simulat, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
latent semantic indexing; SVD; text retrieval; clustering;
D O I
10.1016/j.ipm.2004.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The text retrieval method using latent semantic indexing (LSI) technique with truncated singular value decomposition (SVD) has been intensively studied in recent years. The SVD reduces the noise contained in the original representation of the term-document matrix and improves the information retrieval accuracy. Recent studies indicate that SVD is mostly useful for small homogeneous data collections. For large inhomogeneous datasets, the performance of the SVD based text retrieval technique may deteriorate. We propose to partition a large inhomogeneous dataset into several smaller ones with clustered structure, on which we apply the truncated SVD. Our experimental results show that the clustered SVD strategies may enhance the retrieval accuracy and reduce the computing and storage costs. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1051 / 1063
页数:13
相关论文
共 50 条
  • [1] The Limitation of the SVD for Latent Semantic Indexing
    Mirzal, Andri
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 413 - 416
  • [2] A Comparison of SVD, SVR, ADE and IRR for Latent Semantic Indexing
    Zhang, Wen
    Tang, Xijin
    Yoshida, Taketoshi
    CUTTING-EDGE RESEARCH TOPICS ON MULTIPLE CRITERIA DECISION MAKING, PROCEEDINGS, 2009, 35 : 266 - +
  • [3] Technology classification with latent semantic indexing
    Thorleuchter, Dirk
    Van den Poel, Dirk
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (05) : 1786 - 1795
  • [4] Matrices with low-rank-plus-shift structure: Partial SVD and latent semantic indexing
    Zha, HY
    Zhang, ZY
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) : 522 - 536
  • [5] On updating problems in latent semantic indexing
    Zha, HY
    Simon, HD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 782 - 791
  • [6] An Efficient Collaborative Filtering Algorithm using SVD-free Latent Semantic Indexing and Particle Swarm Optimization
    Abdelwahab, Amira
    Sekiya, Hiroo
    Matsuba, Ikuo
    Horiuchi, Yasuo
    Kuroiwa, Shingo
    Nishida, Masafumi
    IEEE NLP-KE 2009: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING, 2009, : 220 - +
  • [7] A semidiscrete matrix decomposition for latent semantic indexing in information retrieval
    Kolda, TG
    O'Leary, DP
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1998, 16 (04) : 322 - 346
  • [8] Towards recovering architectural concepts using latent semantic indexing
    van der Spek, Pieter
    Klusener, Steven
    van de Laar, Pierre
    CSMR 2008: 12TH EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING: DEVELOPING EVOLVABLE SYSTEMS, 2008, : 253 - +
  • [9] LATENT SEMANTIC INDEXING USING MULTIRESOLUTION ANALYSIS
    Jaber, Tareq
    Amira, Abbes
    Milligan, Peter
    PECCS 2011: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON PERVASIVE AND EMBEDDED COMPUTING AND COMMUNICATION SYSTEMS, 2011, : 327 - 332
  • [10] Knowledge-enhanced latent semantic indexing
    Guo, D
    Berry, MW
    Thompson, BB
    Bailin, S
    INFORMATION RETRIEVAL, 2003, 6 (02): : 225 - 250