Effect of Modulated Helical Magnetic Field on Solidifying Segregation of Sn-3.5 Wt Pct Pb Alloy in a Directional Solidification

被引:6
作者
Cheng, Long [1 ]
Hao, Wenyu [1 ]
Liu, Runcong [1 ]
Wang, Xiaodong [1 ]
Gong, XiuFang [2 ]
Baltaretu, Florin [3 ]
Fautrelle, Yves [4 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 101408, Peoples R China
[2] State Key Lab Long Life High Temp Mat Dongfang Tu, Deyang 618000, Sichuan, Peoples R China
[3] UTC Bucharest, Bd Pache Protopopescu, Bucharest 999032, Romania
[4] Grenoble Alper Univ, SIMAP, EPM, BP75, F-38402 St Martin D Heres, France
来源
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE | 2022年 / 53卷 / 01期
关键词
FLOW DRIVEN; PULSE SEQUENCES; PART II; MACROSEGREGATION; CONVECTION;
D O I
10.1007/s11663-021-02330-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a modulated permanent helical magnetic field is imposed to improve segregation during directional solidification in a binary Sn-3.5 wt pct Pb alloy. The magnetic force created by this magnetic field significantly interferes with heat, mass and momentum transfer of molten metal during solidification. Our experimental results show that this magnetic field, with an appropriate modulation frequency, can not only promote columnar-to-equiaxed transition (CET) but also significantly reduce solute segregation otherwise caused by conventional helical magnetic fields. Our analysis demonstrates the advantages of this approach over natural convection and conventional electromagnetically forced convection.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 47 条
[1]  
Beckermann C, 2001, PROCEEDINGS OF THE MERTON C FLEMINGS SYMPOSIUM ON SOLIDIFICATION AND MATERIALS PROCESSING, P297
[2]   Impact of rotating permanent magnets on gallium melting in an orthogonal container [J].
Ben-David, O. ;
Levy, A. ;
Mikhailovich, B. ;
Azulay, A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 81 :373-382
[3]   Melting driven by natural convection -: A comparison exercise:: first results [J].
Bertrand, O ;
Binet, B ;
Combeau, H ;
Couturier, S ;
Delannoy, Y ;
Gobin, D ;
Lacroix, M ;
Le Quéré, P ;
Médale, M ;
Mencinger, J ;
Sadat, H ;
Vieira, G .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 1999, 38 (01) :5-26
[4]   The effect of fluid flow on the solidification of Ni2B from the undercooled melt [J].
Binder, S. ;
Galenko, P. K. ;
Herlach, D. M. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
[5]   Arrays of Rotating Permanent Magnet Dipoles for Stirring and Pumping of Liquid Metals [J].
Bojarevics, Andris ;
Beinerts, Toms ;
Sarma, Martins ;
Gelfgat, Yurii .
JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2015, 15 (01) :35-39
[6]  
Bucenieks I, 2011, MAGNETOHYDRODYNAMICS, V47, P97
[7]  
Campbell J., 2003, CASTINGS, V2nd
[8]   Permanent magnet applications [J].
Coey, JMD .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 248 (03) :441-456
[9]   Experimental investigation of a flow driven by a combination of a rotating and a traveling magnetic field [J].
Cramer, A. ;
Pal, J. ;
Gerbeth, G. .
PHYSICS OF FLUIDS, 2007, 19 (11)
[10]   Magnetohydrodynamics in materials processing [J].
Davidson, PA .
ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 :273-300