A feasibility study on deep learning-based individualized 3D dose distribution prediction

被引:18
|
作者
Ma, Jianhui [1 ,2 ]
Nguyen, Dan [2 ]
Bai, Ti [2 ]
Folkerts, Michael [2 ]
Jia, Xun [2 ]
Lu, Weiguo [2 ]
Zhou, Linghong [1 ]
Jiang, Steve [2 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Med Artificial Intelligence & Automat MAIA Lab, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
deep learning; dose volume histogram; Pareto optimal dose distribution prediction; physicians' preferred trade-offs; OPTIMIZATION; QUALITY;
D O I
10.1002/mp.15025
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An approximately optimal dose distribution corresponding to a specific patient's anatomy can be predicted by using pre-trained deep learning (DL) models. However, dose distributions are often optimized based not only on patient-specific anatomy but also on physicians' preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing or among different OARs. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the patient's anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods In this work, we developed a modified U-Net network to predict the 3D dose distribution by using patient PTV/OAR masks and the desired DVH as inputs. The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with feature maps encoded from the PTV/OAR masks. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results The trained model can predict a 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the input desired DVH. We calculated the difference between the predicted dose distribution and the optimized dose distribution that has a DVH closest to the desired one for the PTV and for all OARs as a quantitative evaluation. The largest absolute error in mean dose was about 3.6% of the prescription dose, and the largest absolute error in the maximum dose was about 2.0% of the prescription dose. Conclusions In this feasibility study, we have developed a 3D U-Net model with the patient's anatomy and the desired DVH curves as inputs to predict an individualized 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the desired one. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
引用
收藏
页码:4438 / 4447
页数:10
相关论文
共 50 条
  • [1] A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck
    Osman, Alexander F. I.
    Tamam, Nissren M.
    Yousif, Yousif A. M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (09):
  • [2] Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes
    Park, Y. S.
    Choi, J. H.
    Kim, Y.
    Choi, S. H.
    Lee, J. H.
    Kim, K. H.
    Chung, C. J.
    JOURNAL OF DENTAL RESEARCH, 2022, 101 (11) : 1372 - 1379
  • [3] Site-agnostic 3D dose distribution prediction with deep learning neural networks
    Mashayekhi, Maryam
    Tapia, Itzel Ramirez
    Balagopal, Anjali
    Zhong, Xinran
    Barkousaraie, Azar Sadeghnejad
    McBeth, Rafe
    Lin, Mu-Han
    Jiang, Steve
    Dan Nguyen
    MEDICAL PHYSICS, 2022, 49 (03) : 1391 - 1406
  • [4] Improvement of accumulated dose distribution in combined cervical cancer radiotherapy with deep learning-based dose prediction
    Fu, Qi
    Chen, Xinyuan
    Liu, Yuxiang
    Zhang, Jingbo
    Xu, Yingjie
    Yang, Xi
    Huang, Manni
    Men, Kuo
    Dai, Jianrong
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [5] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [6] Deep learning-based 3D reconstruction: a survey
    Taha Samavati
    Mohsen Soryani
    Artificial Intelligence Review, 2023, 56 : 9175 - 9219
  • [7] Deep learning-based 3D reconstruction: a survey
    Samavati, Taha
    Soryani, Mohsen
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9175 - 9219
  • [8] Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation
    Xing, Yixun
    Nguyen, Dan
    Lu, Weiguo
    Yang, Ming
    Jiang, Steve
    MEDICAL PHYSICS, 2020, 47 (02) : 753 - 758
  • [9] A survey of deep learning-based 3D shape generation
    Xu, Qun-Ce
    Mu, Tai-Jiang
    Yang, Yong-Liang
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (03) : 407 - 442
  • [10] Deep Learning-Based 3D Printer Fault Detection
    Verana, Mark
    Nwakanma, Cosmas Ifeanyi
    Lee, Jae Min
    Kim, Dong Seong
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 99 - 102