Nonsmooth data error estimates for FEM approximations of the time fractional cable equation

被引:13
|
作者
Zhu, Peng [1 ]
Xie, Shenglan [2 ]
Wang, Xiaoshen [3 ]
机构
[1] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
[2] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R China
[3] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
Fractional cable equation; Convolution quadrature; Finite element method; Riemann-Liouville fractional derivative; Nonsmooth data error estimate; DIFFUSION-WAVE EQUATIONS; ANOMALOUS ELECTRODIFFUSION; CONVOLUTION QUADRATURE; DOMAIN SOLUTIONS; SCHEMES; MODELS;
D O I
10.1016/j.apnum.2017.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the fractional cable equation, involving two Riemann-Liouville fractional derivatives, with initial/boundary condition is considered. Two fully discrete schemes are obtained by employing piecewise linear Galerkin FEM in space, and using convolution quadrature methods based on the first- and second-order backward difference methods in time. Optimal error estimates in terms of the initial data and the inhomogeneity for the semi-discrete scheme and fully discrete schemes are discussed. Numerical results are shown to verify the theoretical results. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 184
页数:15
相关论文
共 50 条
  • [31] Error estimates for mixed finite element approximations of the viscoelasticity wave equation
    Gao, LP
    Liang, D
    Zhang, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (17) : 1997 - 2016
  • [32] Error Estimates for Backward Fractional Feynman–Kac Equation with Non-Smooth Initial Data
    Jing Sun
    Daxin Nie
    Weihua Deng
    Journal of Scientific Computing, 2020, 84
  • [33] Fractional error estimates of splitting schemes for the nonlinear Schrodinger equation
    Eilinghoff, Johannes
    Schnaubelt, Roland
    Schratz, Katharina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 740 - 760
  • [34] Optimal Error Estimates for Chebyshev Approximations of Functions with Endpoint Singularities in Fractional Spaces
    Ruiyi Xie
    Boying Wu
    Wenjie Liu
    Journal of Scientific Computing, 2023, 96
  • [35] Optimal Error Estimates for Chebyshev Approximations of Functions with Endpoint Singularities in Fractional Spaces
    Xie, Ruiyi
    Wu, Boying
    Liu, Wenjie
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [36] Galerkin finite element method and error analysis for the fractional cable equation
    P. Zhuang
    F. Liu
    I. Turner
    V. Anh
    Numerical Algorithms, 2016, 72 : 447 - 466
  • [37] A Galerkin Finite Element Method for a Class of Time-Space Fractional Differential Equation with Nonsmooth Data
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 386 - 406
  • [38] Galerkin finite element method and error analysis for the fractional cable equation
    Zhuang, P.
    Liu, F.
    Turner, I.
    Anh, V.
    NUMERICAL ALGORITHMS, 2016, 72 (02) : 447 - 466
  • [39] A priori error estimates of expanded mixed FEM for Kirchhoff type parabolic equation
    Nisha Sharma
    Morrakot Khebchareon
    Amiya K. Pani
    Numerical Algorithms, 2020, 83 : 125 - 147
  • [40] A priori error estimates of expanded mixed FEM for Kirchhoff type parabolic equation
    Sharma, Nisha
    Khebchareon, Morrakot
    Pani, Amiya K.
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 125 - 147