Transforming Computational Drug Discovery with Machine Learning and AI

被引:58
作者
Smith, Justin S. [1 ,2 ,3 ]
Roitberg, Adrian E. [1 ]
Isayev, Olexandr [4 ]
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[4] Univ N Carolina, UNC Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
来源
ACS MEDICINAL CHEMISTRY LETTERS | 2018年 / 9卷 / 11期
基金
美国国家科学基金会;
关键词
Deep learning; artificial intelligence; drug discovery; machine learning; molecular potentials; force field; neural network;
D O I
10.1021/acsmedchemlett.8b00437
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
In this Viewpoint, we discuss the current progress in applications of machine learning (ML) and artificial intelligence (AI) to meet the challenges of computational drug discovery. We identify several areas where existing methods have the potential to accelerate pharmaceutical research and disrupt more traditional approaches.
引用
收藏
页码:1065 / 1069
页数:9
相关论文
共 12 条
  • [1] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [2] Machine learning molecular dynamics for the simulation of infrared spectra
    Gastegger, Michael
    Behler, Joerg
    Marquetand, Philipp
    [J]. CHEMICAL SCIENCE, 2017, 8 (10) : 6924 - 6935
  • [3] Controlling an organic synthesis robot with machine learning to search for new reactivity
    Granda, Jaroslaw M.
    Donina, Liva
    Dragone, Vincenza
    Long, De-Liang
    Cronin, Leroy
    [J]. NATURE, 2018, 559 (7714) : 377 - +
  • [4] Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory
    Klucznik, Tomasz
    Mikulak-Klucznik, Barbara
    McCormack, Michael P.
    Lima, Heather
    Szymkuc, Sara
    Bhowmick, Manishabrata
    Molga, Karol
    Zhou, Yubai
    Rickershauser, Lindsey
    Gajewska, Ewa P.
    Toutchkine, Alexei
    Dittwald, Piotr
    Startek, Michal P.
    Kirkovits, Gregory J.
    Roszak, Rafal
    Adamski, Ariel
    Sieredzinska, Bianka
    Mrksich, Milan
    Trice, Sarah L. J.
    Grzybowski, Bartosz A.
    [J]. CHEM, 2018, 4 (03): : 522 - 532
  • [5] Deep reinforcement learning for de novo drug design
    Popova, Mariya
    Isayev, Olexandr
    Tropsha, Alexander
    [J]. SCIENCE ADVANCES, 2018, 4 (07):
  • [6] Inverse molecular design using machine learning: Generative models for matter engineering
    Sanchez-Lengeling, Benjamin
    Aspuru-Guzik, Alan
    [J]. SCIENCE, 2018, 361 (6400) : 360 - 365
  • [7] Planning chemical syntheses with deep neural networks and symbolic AI
    Segler, Marwin H. S.
    Preuss, Mike
    Waller, Mark P.
    [J]. NATURE, 2018, 555 (7698) : 604 - +
  • [8] A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments
    Sellers, Benjamin D.
    James, Natalie C.
    Gobbi, Alberto
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (06) : 1265 - 1275
  • [9] ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
    Smith, J. S.
    Isayev, O.
    Roitberg, A. E.
    [J]. CHEMICAL SCIENCE, 2017, 8 (04) : 3192 - 3203
  • [10] Smith J. S., 2018, Outsmarting quantum chemistry through transfer learning