Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX

被引:11
作者
Gavriljuk, Konstantin [1 ,5 ]
Schartner, Jonas [1 ]
Seidel, Hans [1 ,5 ]
Dickhut, Clarissa [2 ]
Zahedi, Rene P. [2 ]
Hedberg, Christian [3 ,4 ]
Koetting, Carsten [1 ]
Gerwert, Klaus [1 ]
机构
[1] Ruhr Univ Bochum, Dept Biophys, Univ Str 150, D-44801 Bochum, Germany
[2] Leibniz Inst Analyt Wissensch ISAS eV, Otto Hahn Str 6b, D-44227 Dortmund, Germany
[3] Umea Univ, Dept Chem, SE-90187 Umea, Sweden
[4] Umea Univ, Umea Ctr Microbial Res, SE-90187 Umea, Sweden
[5] Max Planck Inst Mol Physiol, Dept Syst Cell Biol, Otto Hahn Str 11, D-44227 Dortmund, Germany
关键词
TIME-RESOLVED FTIR; GTPASE REACTION; RAB PROTEINS; IDENTIFICATION; UNIVERSAL; REVEALS; COMPLEX; BINDING; DRRA;
D O I
10.1021/acs.biochem.6b00524
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The intracellular pathogen Legionella pneumophila infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of-the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of host pathogen interactions.
引用
收藏
页码:4375 / 4385
页数:11
相关论文
共 50 条
[31]   A gyrB oligonucleotide microarray for the specific detection of pathogenic Legionella and three Legionella pneumophila subsp. [J].
Xi, Daoyi ;
Dou, Yan ;
Ren, Wei ;
Yang, Shuang ;
Feng, Lu ;
Cao, Boyang ;
Wang, Lei .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2017, 110 (12) :1515-1525
[32]   Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins [J].
Thomas, David R. ;
Newton, Patrice ;
Lau, Nicole ;
Newton, Hayley J. .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
[33]   Targeting single-nucleotide polymorphisms in the 16S rRNA gene to detect and differentiate Legionella pneumophila and non-Legionella pneumophila species [J].
Zhan, Xiao-Yong ;
Hu, Chao-Hui ;
Zhu, Qing-Yi .
ARCHIVES OF MICROBIOLOGY, 2016, 198 (06) :591-594
[34]   Structural insight into the distinct regulatory mechanism of the HEPN-MNT toxin-antitoxin system in Legionella pneumophila [J].
Jin, Chenglong ;
Jeon, Cha-Hee ;
Kim, Heung Wan ;
Kang, Jin Mo ;
Choi, Yuri ;
Kang, Sung-Min ;
Lee, Hyung Ho ;
Kim, Do-Hee ;
Han, Byung Woo ;
Lee, Bong-Jin .
NATURE COMMUNICATIONS, 2024, 15 (01)
[35]   Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila [J].
Quaile, Andrew T. ;
Urbanus, Malene L. ;
Stogios, Peter J. ;
Nocek, Boguslaw ;
Skarina, Tatiana ;
Ensminger, Alexander W. ;
Savchenko, Alexei .
STRUCTURE, 2015, 23 (08) :1459-1469
[36]   Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH [J].
Zhang, Qing ;
Wan, Min ;
Kudryashova, Elena ;
Kudryashov, Dmitri ;
Mao, Yuxin .
PLOS PATHOGENS, 2023, 19 (07)
[37]   A conserved OmpA-like protein in Legionella pneumophila required for efficient intracellular replication [J].
Goodwin, Ian P. ;
Kumova, Ogan K. ;
Ninio, Shira .
FEMS MICROBIOLOGY LETTERS, 2016, 363 (16)
[38]   MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis [J].
Abshire, Camille F. ;
Dragoi, Ana-Maria ;
Roy, Craig R. ;
Ivanov, Stanimir S. .
PLOS PATHOGENS, 2016, 12 (12)
[39]   The Legionella pneumophila Effector Protein, LegC7, Alters Yeast Endosomal Trafficking [J].
O'Brien, Kevin M. ;
Lindsay, Elizabeth L. ;
Starai, Vincent J. .
PLOS ONE, 2015, 10 (02)
[40]   Symbiont-Mediated Defense against Legionella pneumophila in Amoebae [J].
Koenig, Lena ;
Wentrup, Cecilia ;
Schulz, Frederik ;
Wascher, Florian ;
Escola, Sarah ;
Swanson, Michele S. ;
Buchrieser, Carmen ;
Horn, Matthias .
MBIO, 2019, 10 (03)