On Some Semi-Intuitionistic Logics

被引:8
作者
Cornejo, Juan M. [1 ,2 ]
Viglizzo, Ignacio D. [1 ,2 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
Semi-intuitionistic logic; Semi-Heyting algebras; Intuitionistic logic; Heyting algebras; EQUIVALENT;
D O I
10.1007/s11225-014-9568-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.
引用
收藏
页码:303 / 344
页数:42
相关论文
共 15 条
  • [1] The variety generated by semi-Heyting chains
    Abad, M.
    Cornejo, J. M.
    Diaz Varela, J. P.
    [J]. SOFT COMPUTING, 2011, 15 (04) : 721 - 728
  • [2] Semi-Heyting Algebras Term-equivalent to Godel Algebras
    Abad, Manuel
    Manuel Cornejo, Juan
    Diaz Varela, Jose Patricio
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02): : 625 - 642
  • [3] Balbes R., 1975, Distributive Lattices
  • [4] Davey B., 2002, INTRO LATTICES ORDER, V2nd, DOI DOI 10.1017/CBO9780511809088
  • [5] Fitting, 1969, STUDIES LOGIC FDN MA
  • [6] A Survey of Abstract Algebraic Logic
    J. M. Font
    R. Jansana
    D. Pigozzi
    [J]. Studia Logica, 2003, 74 (1-2) : 13 - 97
  • [7] PSEUDO-COMPLEMENTS IN SEMI-LATTICES
    FRINK, O
    [J]. DUKE MATHEMATICAL JOURNAL, 1962, 29 (04) : 505 - &
  • [8] Gratzer G, 1971, Lattice Theory, First Concepts and Distributive Lattices
  • [9] Semi-intuitionistic Logic
    Manuel Cornejo, Juan
    [J]. STUDIA LOGICA, 2011, 98 (1-2) : 9 - 25
  • [10] Nishimura I., 1960, J SYMBOLIC LOGIC, V25, P327