A comprehensive review of microwave application on the oil shale: Prospects for shale oil production

被引:83
|
作者
Taheri-Shakib, Jaber [1 ]
Kantzas, Apostolos [2 ]
机构
[1] Res Inst Petr Ind, Dept Res & Technol Rock & Fluid Reservoirs, Tehran, Iran
[2] Univ Calgary, Dept Chem & Petr Engn, 2500 Univ Dr, Calgary, AB, Canada
关键词
Oil shale; Microwave heating; Conventional heating; Shale oil upgrading; Pyrolysis; HEATING RATE; HEAVY OIL; DIELECTRIC-PROPERTIES; PYROLYSIS KINETICS; MINERAL MATRIX; PORE STRUCTURE; PARTICLE-SIZE; CATALYTIC HYDROTREATMENT; AROMATIC-HYDROCARBONS; ELECTRICAL-PROPERTIES;
D O I
10.1016/j.fuel.2021.121519
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study reviews the mechanism of microwave irradiation and the affecting parameters, including heating rate, particle size, catalysts, and supercritical fluids on the microwave induced pyrolysis of oil shales. The factors influencing shale oil upgrading using microwave and conventional heating were analyzed. Although shale ash induces secondary cracking in conventional heating, followed by cracking of heavy compounds and increased light oil and pyrolysis gas, the corresponding mechanism in microwave heating has not yet been studied. The shale ash composition and particle size play a vital role in conventional heating efficiency. Increasing oil shale particles size in conventional heating after reaching the maximum converted shale oil reduces produced oil due to increased heat transfer and volatile diffusion in oil shale grains and induction of secondary cracking, which leads to the intensification of shale oil upgrading. Catalysts with high microwave absorption capacity, such as iron powder, remove higher percentages of sulfur, nitrogen, and oxygen from shale oil in microwave pyrolysis as compared to conventional heating. The presence of zeolite in microwave pyrolysis causes better and more effective shale oil upgrading by reducing C-10-C-16, >C-16, naphtha fraction, and increasing kerosene fraction compared to conventional pyrolysis. The presence of water increases polycyclic aromatics, increases the concentration of alkene fraction and decreases asphaltene and coke formed by solvation or caging of shale oil molecules. The presence of nitrogen and hydrogen in conventional pyrolysis reduces desulfurization and upgraded shale oil yield, respectively. A sharp increase in the heating rate in conventional and microwave pyrolysis reduces shale oil yield. In conventional heating, increasing heating rate decreases the hydrogen (H)/carbon (C) ratio, and the nitrogen and sulfur fractions increase due to the nature of chemical bonding with hydrocarbons and its entangled with metal oxides. In microwave pyrolysis at high heating rates, the H/C ratio increases and the amounts of nitrogen and sulfur in shale oil decrease sharply. The high microwave radiation power facilitates the removal of nitrogen and sulfur that is much higher than conventional pyrolysis. The conversion of pyrite to pyrrhotite in oil shales that have a high microwave absorption capacity increases microwave pyrolysis efficiency. The calcite and feldspar also improve this process because they participate in the pyrolysis process, and their amounts are reduced in the spent shale. Thus, the oil produced from oil shales under the microwave pyrolysis process has lighter and higher quality compounds. However, the broad applications of this technology in the use of oil shales are still unclear and more studies should be done to clarify the advantages and disadvantages of using microwave heating in oil shales. Further study and research are required to develop microwave technology in oil shale, and based on its potentials, it can be introduced as a new and efficient method in oil shale production.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Organic matter evolution in pyrolysis experiments of oil shale under high pressure: Guidance for in situ conversion of oil shale in the Songliao Basin
    He, Wentong
    Sun, Youhong
    Shan, Xuanlong
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 155
  • [32] Comprehensive review: Study on heating rate characteristics and coupling simulation of oil shale pyrolysis
    Yang, Shuangchun
    Wang, Huilei
    Zheng, Jiabing
    Pan, Yi
    Ji, Chengcheng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 177
  • [33] Oil shale - Prospects of assistant energy out of petroleum
    Wang, GY
    Li, RH
    Wu, CL
    Wang, JL
    Proceedings of the World Engineers' Convention 2004, Vol F-A, Resources and Energy, 2004, : 437 - 439
  • [34] The effect of acid treatment on pyrolysis of Longkou oil shale
    Zhang, Zhijun
    Zhao, Liang
    Zhuang, Li
    Li, Yanan
    Zhang, Hanyu
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (13) : 1605 - 1614
  • [35] Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen
    ABOULKAS A
    El HARFI K
    燃料化学学报, 2009, 37 (06) : 659 - 667
  • [36] Application of TGA-MS technique for oil shale characterization and kinetics
    Kok, Mustafa Versan
    Varfolomeev, Mikhail A.
    Nurgaliev, Danis K.
    Kandasamy, Jayaraman
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (19) : 10767 - 10774
  • [37] Review of oil shale semicoke and its combustion utilization
    Han, Xiangxin
    Kulaots, Indrek
    Jiang, Xiumin
    Suuberg, Eric M.
    FUEL, 2014, 126 : 143 - 161
  • [38] Comprehensive Utilization of Oil Shale with Analysis of Material Properties
    Yuan, Zhiyang
    RESEARCH ON MECHANICS, DYNAMIC SYSTEMS AND MATERIAL ENGINEERING, 2013, 625 : 247 - 250
  • [39] Comprehensive preparation and multiscale characterization of kerogen in oil shale
    Zhan, Honglei
    Yang, Qi
    Qin, Fankai
    Meng, Zhaohui
    Chen, Ru
    Miao, Xinyang
    Yue, Wenzheng
    Zhao, Kun
    ENERGY, 2022, 252
  • [40] Utilization of oil shale in the production of Portland clinker
    Al-Otoom, AY
    CEMENT & CONCRETE COMPOSITES, 2006, 28 (01) : 3 - 11