CO2 Mitigation via Capture and Chemical Conversion in Seawater

被引:79
|
作者
Rau, Greg H. [1 ,2 ]
机构
[1] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Carbon Management Program, Livermore, CA 94550 USA
关键词
CALCIUM-CARBONATE; OCEAN; DISSOLUTION; DIOXIDE; ACIDIFICATION; TECHNOLOGIES; BICARBONATE;
D O I
10.1021/es102671x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO2 in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO2 hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO2 capture and storage scheme at coastal locations. Such low-tech CO2 mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO2 emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature's own very effective but slow CO2 mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO2 and ocean acidity on geologic times scales.
引用
收藏
页码:1088 / 1092
页数:5
相关论文
共 50 条
  • [1] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [2] Economic Viability of Integrated CO2 Capture and Conversion
    Kim, Yongwook
    Namdari, Marzieh
    Jewlal, Andrew M. L.
    Chen, Yifu
    Pimlott, Douglas J. D.
    Stolar, Monika
    Berlinguette, Curtis P.
    ACS ENERGY LETTERS, 2024, 10 (01): : 403 - 409
  • [3] Carbonic anhydrase for CO2 capture, conversion and utilization
    Talekar, Sachin
    Jo, Byung Hoon
    Dordick, Jonathan S.
    Kim, Jungbae
    CURRENT OPINION IN BIOTECHNOLOGY, 2022, 74 : 230 - 240
  • [4] Integrated CO2 capture and conversion to form syngas
    Kim, Yongwook
    Lees, Eric W.
    Donde, Chaitanya
    Jewlal, Andrew M. L.
    Waizenegger, Christopher E. B.
    de Hepcee, Basil M. W.
    Simpson, Grace L.
    Valji, Akshi
    Berlinguette, Curtis P.
    JOULE, 2024, 8 (11) : 3105 - 3125
  • [5] Electrochemical carbon capture processes for mitigation of CO2 emissions
    Rahimi, Mohammad
    Khurram, Aliza
    Hatton, T. Alan
    Gallant, Betar
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (20) : 8676 - 8695
  • [6] Bifunctional Artificial Carbonic Anhydrase for the Integrated Capture and Electrochemical Conversion of CO2
    Gutierrez-Sanchez, Oriol
    Ching, H. Y. Vincent
    Daems, Nick
    Bulut, Metin
    Pant, Deepak
    Breugelmans, Tom
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (41) : 13865 - 13876
  • [7] Tuning Reactive Crystallization Pathways for Integrated CO2 Capture, Conversion, and Storage via Mineralization
    Ochonma, Prince
    Gao, Xun
    Gadikota, Greeshma
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (03) : 267 - 274
  • [8] Corrosion mitigation via a pH stabilization method in monoethanolamine-based solutions for post-combustion CO2 capture
    Zheng, Liangfu
    Landon, James
    Matin, Naser S.
    Thomas, Gerald A.
    Liu, Kunlei
    CORROSION SCIENCE, 2016, 106 : 281 - 292
  • [9] Development of Chemical CO2 Solvent for High-Pressure CO2 Capture
    Yamamoto, Shin
    Machida, Hiroshi
    Fujioka, Yuichi
    Higashii, Takayuki
    GHGT-11, 2013, 37 : 505 - 517
  • [10] Integration of CO2 Capture and Electrochemical Conversion Focus Review
    Xia, Qing
    Zhang, Kouer
    Zheng, Tingting
    An, Liang
    Xia, Chuan
    Zhang, Xiao
    ACS ENERGY LETTERS, 2023, 8 (06) : 2840 - 2857