Second-order duality in nondifferentiable fractional programming

被引:6
作者
Ahmad, I. [1 ]
Husain, Z. [2 ]
Al-Homidan, S. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Integral Univ, Dept Math, Fac Sci Appl, Lucknow 226026, Uttar Pradesh, India
关键词
Fractional programming; Second-order duality; Optimal solutions; Generalized convexity; GENERALIZED CONVEXITY; OPTIMALITY CONDITIONS;
D O I
10.1016/j.nonrwa.2010.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order dual is formulated for a nondifferentiable fractional programming problem. Using the generalized second-order (F, alpha, rho, d)-convexity assumptions on the functions involved, weak, strong and converse duality theorems are established in order to relate the primal and dual problems. (C) 2010 Published by Elsevier Ltd
引用
收藏
页码:1103 / 1110
页数:8
相关论文
共 32 条
[1]   DUALITY THEOREMS FOR NONLINEAR FRACTIONAL PROGRAMS [J].
AGGARWAL, SP ;
SAXENA, PC .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (09) :523-525
[2]   Second-order duality in nondifferentiable minmax programming involving type-I functions [J].
Ahmad, I. ;
Husain, Z. ;
Sharma, Sarita .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (01) :91-102
[3]   Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity [J].
Ahmad, I. ;
Husain, Z. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (02) :255-275
[4]   Second order (F, α, ρ, d)-convexity and duality in multiobjective programming [J].
Ahmad, I. ;
Husain, Z. .
INFORMATION SCIENCES, 2006, 176 (20) :3094-3103
[5]   Duality in nondifferentiable minimax fractional programming with generalized convexity [J].
Ahmad, I. ;
Husain, Z. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) :545-551
[6]  
Ahmad I., 2004, J NONLINEAR CONVEX A, V5, P113
[7]  
Bector C. R., 1986, Journal of Information & Optimization Sciences, V7, P335
[8]  
Bector C. R., 1987, Opsearch, V24, P143
[9]  
Bector C. R., 1973, Zeitschrift fur Operations Research, Serie A (Theorie), V17, P183, DOI 10.1007/BF01951417
[10]  
CRAVEN BD, 1977, B AUSTRALIAN MATH SO, V16, P325, DOI DOI 10.1017/S0004972700023431