The physiological and molecular mechanism of brassinosteroid in response to stress: a review

被引:151
作者
Anwar, Ali [1 ]
Liu, Yumei [1 ,2 ]
Dong, Rongrong [1 ]
Bai, Longqiang [1 ]
Yu, Xianchang [1 ]
Li, Yansu [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100081, Peoples R China
[2] Heze Univ, Coll Agr & Biol Engn, Heze 274015, Peoples R China
关键词
Brassinosteroids; Physiology; Antioxidants; Biotic and abiotic stress; CUCUMBER CUCUMIS-SATIVUS; INDUCED OXIDATIVE STRESS; ALPHA-SUBUNIT GPA1; ABSCISIC-ACID; ARABIDOPSIS-THALIANA; ANTIOXIDANT SYSTEM; SALT STRESS; SEED-GERMINATION; PHOTOSYNTHETIC CHARACTERISTICS; NITROGEN-METABOLISM;
D O I
10.1186/s40659-018-0195-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The negative effects of environmental stresses, such as low temperature, high temperature, salinity, drought, heavy metal stress, and biotic stress significantly decrease crop productivity. Plant hormones are currently being used to induce stress tolerance in a variety of plants. Brassinosteroids (commonly known as BR) are a group of phytohormones that regulate a wide range of biological processes that lead to tolerance of various stresses in plants. BR stimulate BRASSINAZOLE RESISTANCE 1 (BZR1)/BRI1-EMS SUPPRESSOR 1 (BES1), transcription factors that activate thousands of BR-targeted genes. BR regulate antioxidant enzyme activities, chlorophyll contents, photosynthetic capacity, and carbohydrate metabolism to increase plant growth under stress. Mutants with BR defects have shortened root and shoot developments. Exogenous BR application increases the biosynthesis of endogenous hormones such as indole-3-acetic acid, abscisic acid, jasmonic acid, zeatin riboside, brassinosteroids (BR), and isopentenyl adenosine, and gibberellin (GA) and regulates signal transduction pathways to stimulate stress tolerance. This review will describe advancements in knowledge of BR and their roles in response to different stress conditions in plants.
引用
收藏
页数:15
相关论文
共 122 条
[1]  
Abbas S, 2013, PAK J BOT, V45, P1273
[2]   Hormone interactions in stomatal function [J].
Acharya, Biswa R. ;
Assmann, Sarah M. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :451-462
[3]  
Alam MM, 2007, PHOTOSYNTHETICA, V45, P139, DOI 10.1007/s11099-007-0022-4
[4]   24-epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea [J].
Ali, B. ;
Hayat, S. ;
Fariduddin, Q. ;
Ahmad, A. .
CHEMOSPHERE, 2008, 72 (09) :1387-1392
[5]   A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek) [J].
Ali, B. ;
Hasan, S. A. ;
Hayat, S. ;
Hayat, Q. ;
Yadav, S. ;
Fariduddin, Q. ;
Ahmad, A. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2008, 62 (02) :153-159
[6]   Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress [J].
Anuradha, S. ;
Rao, S. Seeta Ram .
PHOTOSYNTHETICA, 2009, 47 (02) :317-320
[7]   Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.) [J].
Anuradha, S ;
Rao, SSS .
PLANT GROWTH REGULATION, 2001, 33 (02) :151-153
[8]   24-Epibrassinolide Ameliorates Endogenous Hormone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings [J].
Anwar, Ali ;
Bai, Longqiang ;
Miao, Li ;
Liu, Yumei ;
Li, Shuzhen ;
Yu, Xianchang ;
Li, Yansu .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
[10]   An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress [J].
Bajguz, Andrzej .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2010, 68 (02) :175-179