Almost global existence for quasilinear wave equations in waveguides with Neumann boundary conditions

被引:6
作者
Metcalfe, Jason
Stewart, Ann
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
D O I
10.1090/S0002-9947-07-04290-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove almost global existence of solutions to certain quasilinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides with Neumann boundary conditions. We use a Galerkin method to expand the Laplacian of the compact base in terms of its eigenfunctions. For those terms corresponding to zero modes, we obtain decay using analogs of estimates of Klainerman and Sideris. For the nonzero modes, estimates for Klein-Gordon equations, which provide better decay, are available.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 16 条
[1]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
[2]   An elementary proof of global or almost global existence for quasi-linear wave equations [J].
Hidano, K .
TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (02) :271-287
[3]  
Hormander L., 1997, Mathematics 4 Applications, V26
[4]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[5]  
John F., 1990, U LECT SERIES, V2
[6]   Almost global existence for some semilinear wave equations [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :265-279
[7]   Global existence for a quasilinear wave equation outside of star-shaped domains [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (01) :155-226
[8]  
Klainerman S, 1996, COMMUN PUR APPL MATH, V49, P307, DOI 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO
[9]  
2-H
[10]   Nonlinear wave equations in infinite waveguides [J].
Lesky, PH ;
Racke, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1265-1301