A way to remove duplication from Sigma(i=1)(N) 1/x(i)

被引:0
作者
Idogawa, T [1 ]
Tsutsumi, M [1 ]
机构
[1] WASEDA UNIV,DEPT APPL PHYS,SHINJUKU KU,TOKYO 169,JAPAN
关键词
D O I
10.1006/jnth.1996.0095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to show that we can rewrite a sum of unit fractions Sigma(i=1)(N) 1/x(i)<1 in which 0<x(i) less than or equal to x(i+1) to the form Sigma(i=1)(N) 1/x(i)' in which 0<x'(i)<x'(i+1). In other words, it is always possible to remove duplication from Sigma(i=1)(N) 1/x(i), without changing its length. Moreover, using this rewriting process, we get a new algorithm for the expansion of Egyptian fractions. We state this algorithm and show some numerical results. (C) 1996 Academic Press, Inc.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 4 条
[1]   THE SPLITTING ALGORITHM FOR EGYPTIAN FRACTIONS [J].
BEECKMANS, L .
JOURNAL OF NUMBER THEORY, 1993, 43 (02) :173-185
[2]  
Bleicher M.N., 1972, J NUMBER THEORY, V4, P342
[3]  
BLEICHER MN, 1976, J NUMBER THEORY, V8, P157, DOI 10.1016/0022-314X(76)90098-6
[4]  
ERDOS P, 1980, MONOGRAPHIE ENSEIGNE, V28