Cathodoluminescence study of luminescence centers in hexagonal and cubic phase GaN hetero-integrated on Si(100)

被引:9
作者
Liu, R.
Bayram, C. [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Innovat COmpound Semicond ICOR Lab, Urbana, IL 61801 USA
关键词
SPATIALLY-RESOLVED CATHODOLUMINESCENCE; MOLECULAR-BEAM EPITAXY; MULTIPLE-QUANTUM WELLS; OPTICAL-TRANSITIONS; TEMPERATURE-DEPENDENCE; ENERGY-GAP; BAND-GAP; PHOTOLUMINESCENCE; SEMICONDUCTORS; GROWTH;
D O I
10.1063/1.4958335
中图分类号
O59 [应用物理学];
学科分类号
摘要
Hexagonal and cubic GaN-integrated on on-axis Si(100) substrate by metalorganic chemical vapor deposition via selective epitaxy and hexagonal-to-cubic-phase transition, respectively-are studied by temperature-and injection-intensity-dependent cathodoluminescence to explore the origins of their respective luminescence centers. In hexagonal (cubic) GaN integrated on Si, we identify at room temperature the near band edge luminescence at 3.43 eV (3.22 eV), and a defect peak at 2.21 eV (2.72 eV). At low temperature, we report additional hexagonal (cubic) GaN bound exciton transition at 3.49 eV (3.28 eV), and a donor-to-acceptor transition at 3.31 eV (3.18 eV and 2.95 eV). In cubic GaN, two defect-related acceptor energies are identified as 110 and 360 meV. For hexagonal (cubic) GaN (using Debye Temperature (beta) of 600 K), Varshni coefficients of alpha = 7.37 +/- 0.13 x 10(-4) (6.83 +/- 0.22 x 10(-4))eV/K and E-0 = 3.51 +/- 0.01 (3.31 +/- 0.01) eV are extracted. Hexagonal and cubic GaN integrated on CMOS compatible on-axis Si(100) are shown to be promising materials for next generation devices. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 37 条
  • [1] Cubic group-III nitride-based nanostructures-basics and applications in optoelectronics
    As, D. J.
    [J]. MICROELECTRONICS JOURNAL, 2009, 40 (02) : 204 - 209
  • [2] The near band edge photoluminescence of cubic GaN epilayers
    As, DJ
    Schmilgus, F
    Wang, C
    Schottker, B
    Schikora, D
    Lischka, K
    [J]. APPLIED PHYSICS LETTERS, 1997, 70 (10) : 1311 - 1313
  • [3] Electroluminescence of a cubic GaN/GaAs (001) p-n junction
    As, DJ
    Richter, A
    Busch, J
    Lübbers, M
    Mimkes, J
    Lischka, K
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (01) : 13 - 15
  • [4] POLARIZED RAMAN-SPECTRA IN GAN
    AZUHATA, T
    SOTA, T
    SUZUKI, K
    NAKAMURA, S
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (10) : L129 - L133
  • [5] Bayram C., 2015, U. S. Patent, Patent No. [9,048,173, 9048173]
  • [6] Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
    Bayram, Can
    Ott, John A.
    Shiu, Kuen-Ting
    Cheng, Cheng-Wei
    Zhu, Yu
    Kim, Jeehwan
    Razeghi, Manijeh
    Sadana, Devendra K.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (28) : 4492 - 4496
  • [7] Bub J. H., 2014, APPL PHYS LETT, V105
  • [8] Recombination dynamics of localized excitons in cubic InxGa1-xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C-SiC substrate
    Chichibu, SF
    Onuma, T
    Aoyama, T
    Nakajima, K
    Ahmet, P
    Chikyow, T
    Sota, T
    DenBaars, SP
    Nakamura, S
    Kitamura, T
    Ishida, Y
    Okumura, H
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (04): : 1856 - 1862
  • [9] Bulk lattice parameter and band gap of cubic InxGa1 _xN (001) alloys on MgO (100) substrates
    Compean Garcia, V. D.
    Orozco Hinostroza, I. E.
    Escobosa Echavarria, A.
    Lopez Luna, E.
    Rodriguez, A. G.
    Vidal, M. A.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2015, 418 : 120 - 125
  • [10] ABSORPTION, REFLECTANCE, AND LUMINESCENCE OF GAN EXPITAXIAL LAYERS
    DINGLE, R
    SELL, DD
    STOKOWSKI, SE
    ILEGEMS, M
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (04): : 1211 - +