Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate

被引:29
作者
Chalabi, Hamidreza [1 ]
Hasman, Erez [2 ,3 ]
Brongersma, Mark L. [1 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[2] Technion Israel Inst Technol, Fac Mech Engn, Micro & Nanoopt Lab, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Fac Mech Engn, Russel Berrie Nanotechnol Inst, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 01期
关键词
COUPLED-WAVE ANALYSIS; HEAT-TRANSFER; INFRARED PROPERTIES; SILICON CARBIDE; NANOSCALE; GRATINGS; IMPLEMENTATION; POWER;
D O I
10.1103/PhysRevB.91.014302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper provides a method based on rigorous coupled wave analysis for the calculation of the radiative thermal conductance between a layer that is patterned with arbitrary, periodically repeating features and a planar substrate. This method is applied to study the transfer from an array of beams with a rectangular cross section. The impact of the structure size and spacing on the thermal conductance are investigated. These calculations are compared to an effective medium theory, which becomes increasingly accurate as the structure sizes fall well below the relevant resonance wavelengths of materials and structures. Moreover, comparisons are made with a modified proximity approximation and the far-field approximation, which become valid for small and large spacings, respectively. Results show that new levels of control over the magnitude and spectral contributions to thermal conductance can be achieved with corrugated structures relative to planar ones. Specifically, we show for SiC arrays with rectangular cross sections and with the same filling fraction, that the use of a smaller periodicity leads to a lowered far-field thermal transfer and an increased near-field thermal transfer.
引用
收藏
页数:9
相关论文
共 46 条
[11]   Thermal radiation scanning tunnelling microscopy [J].
De Wilde, Yannick ;
Formanek, Florian ;
Carminati, Remi ;
Gralak, Boris ;
Lemoine, Paul-Arthur ;
Joulain, Karl ;
Mulet, Jean-Philippe ;
Chen, Yong ;
Greffet, Jean-Jacques .
NATURE, 2006, 444 (7120) :740-743
[12]  
ECKHARDT W, 1982, OPT COMMUN, V41, P305, DOI 10.1016/0030-4018(82)90402-3
[13]   Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared [J].
Francoeur, Mathieu ;
Menguc, M. Pinar ;
Vaillon, Rodolphe .
PHYSICAL REVIEW B, 2011, 84 (07)
[14]   Spectral tuning of near-field radiative heat flux between two thin silicon carbide films [J].
Francoeur, Mathieu ;
Menguc, M. Pinar ;
Vaillon, Rodolphe .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (07)
[15]  
Gropp W., 1999, USING MPI PORTABLE P, P371
[16]   Enhanced radiative heat transfer between nanostructured gold plates [J].
Guerout, R. ;
Lussange, J. ;
Rosa, F. S. S. ;
Hugonin, J-P ;
Dalvit, D. A. R. ;
Greffet, J-J ;
Lambrecht, A. ;
Reynaud, S. .
PHYSICAL REVIEW B, 2012, 85 (18)
[17]   Theory of thermal emission from periodic structures [J].
Han, S. E. .
PHYSICAL REVIEW B, 2009, 80 (15)
[18]   Emission polarization of roughened glass and aluminum surfaces [J].
Jordan, DL ;
Lewis, GD ;
Jakeman, E .
APPLIED OPTICS, 1996, 35 (19) :3583-3590
[19]   Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field [J].
Joulain, K ;
Mulet, JP ;
Marquier, F ;
Carminati, R ;
Greffet, JJ .
SURFACE SCIENCE REPORTS, 2005, 57 (3-4) :59-112
[20]   Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects [J].
Krueger, Matthias ;
Bimonte, Giuseppe ;
Emig, Thorsten ;
Kardar, Mehran .
PHYSICAL REVIEW B, 2012, 86 (11)