Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis

被引:69
作者
Chainais-Hillairet, C
Liu, JG [1 ]
Peng, YJ
机构
[1] Univ Clermont Ferrand, CNRS, UMR 6620, Lab Math Appl, F-63177 Aubiere, France
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2003年 / 37卷 / 02期
关键词
finite volume scheme; drift-diffusion equations; approximation of gradient;
D O I
10.1051/m2an:2003028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal with coupled terms in the continuity equations. Finally, a numerical example is given to show the efficiency of the scheme.
引用
收藏
页码:319 / 338
页数:20
相关论文
共 19 条
[1]  
ARIMBURGO F, 1992, NONLINEAR KINETIC TH, P1
[2]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[3]  
BREZZI F, 1987, CR ACAD SCI I-MATH, V305, P599
[4]   TWO-DIMENSIONAL EXPONENTIAL FITTING AND APPLICATIONS TO DRIFT-DIFFUSION MODELS [J].
BREZZI, F ;
MARINI, LD ;
PIETRA, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1342-1355
[5]   Convergence of a finite-volume scheme for the drift-diffusion equations in 1D [J].
Chainais-Hillairet, C ;
Peng, YJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (01) :81-108
[6]  
CHAINAISHILLAIR.C, 2002, P 3 INT S FIN VOL CO, P163
[7]  
CHAINAISHILLAIR.C, UNPU MATH MODELS MET
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]   Convergence of a finite volume scheme for nonlinear degenerate parabolic equations [J].
Eymard, R ;
Gallouët, T ;
Herbin, R ;
Michel, A .
NUMERISCHE MATHEMATIK, 2002, 92 (01) :41-82
[10]  
Eymard R, 2000, HDBK NUM AN, V7, P713