The low mach number limit for the full navier-stokes-fourier system

被引:74
作者
Feireisl, Eduard
Novotny, Antonin
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Toulon & Var, F-83957 La Garde, France
关键词
D O I
10.1007/s00205-007-0066-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low Mach number asymptotic limit for solutions to the full Navier-Stokes-Fourier system, supplemented with ill-prepared data and considered on an arbitrary time interval. Convergencetowards the incompressible Navier-Stokes equations is shown.
引用
收藏
页码:77 / 107
页数:31
相关论文
共 29 条
[1]  
ALAZARD T, 2005, IN PRESS ARCH RATION
[2]   Nonlinear parabolic equations with measure data [J].
Boccardo, L ;
DallAglio, A ;
Gallouet, T ;
Orsina, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (01) :237-258
[3]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[4]  
Buet C., 2003, ASYMPTOTIC ANAL FLUI
[5]   Zero Mach number limit for compressible flows with periodic boundary conditions [J].
Danchin, R .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (06) :1153-1219
[6]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]   On the dynamics of gaseous stars [J].
Ducomet, B ;
Feireisl, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (02) :221-266
[9]  
Ebin D.B., 1983, TEUBNER TEXTE MATH, V57, P93
[10]   MOTION OF SLIGHTLY COMPRESSIBLE FLUIDS VIEWED AS A MOTION WITH STRONG CONSTRAINING FORCE [J].
EBIN, DG .
ANNALS OF MATHEMATICS, 1977, 105 (01) :141-200