Imaging Coulomb islands in a quantum Hall interferometer

被引:55
作者
Hackens, B. [1 ]
Martins, F. [1 ]
Faniel, S. [1 ]
Dutu, C. A.
Sellier, H. [2 ,3 ]
Huant, S. [2 ,3 ]
Pala, M. [4 ]
Desplanque, L. [5 ]
Wallart, X. [5 ]
Bayot, V. [1 ,2 ,3 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci Nanophys IMCN NAP, B-1348 Louvain, Belgium
[2] CNRS, Inst Neel, F-38042 Grenoble 9, France
[3] Univ Grenoble 1, F-38042 Grenoble 9, France
[4] Minatec, Grenoble INP, IMEP LAHC, F-38016 Grenoble, France
[5] IEMN, F-59652 Villeneuve Dascq, France
来源
NATURE COMMUNICATIONS | 2010年 / 1卷
关键词
AHARONOV-BOHM OSCILLATIONS; ELECTRON-TRANSPORT; STATES;
D O I
10.1038/ncomms1038
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the quantum Hall (QH) regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magneticfield magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY
    AHARONOV, Y
    BOHM, D
    [J]. PHYSICAL REVIEW, 1959, 115 (03): : 485 - 491
  • [2] Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy
    Aoki, N
    da Cunha, CR
    Akis, R
    Ferry, DK
    Ochiai, Y
    [J]. PHYSICAL REVIEW B, 2005, 72 (15):
  • [3] Quantum Hall effect transition in scanning gate experiments
    Baumgartner, A.
    Ihn, T.
    Ensslin, K.
    Maranowski, K.
    Gossard, A. C.
    [J]. PHYSICAL REVIEW B, 2007, 76 (08)
  • [4] ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL-EFFECT IN MULTIPROBE CONDUCTORS
    BUTTIKER, M
    [J]. PHYSICAL REVIEW B, 1988, 38 (14): : 9375 - 9389
  • [5] Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics
    Camino, FE
    Zhou, W
    Goldman, VJ
    [J]. PHYSICAL REVIEW B, 2005, 72 (07):
  • [6] ELECTROSTATICS OF EDGE CHANNELS
    CHKLOVSKII, DB
    SHKLOVSKII, BI
    GLAZMAN, LI
    [J]. PHYSICAL REVIEW B, 1992, 46 (07): : 4026 - 4034
  • [7] Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard
    Crook, R
    Smith, CG
    Graham, AC
    Farrer, I
    Beere, HE
    Ritchie, DA
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (24)
  • [8] DASARMA S, 2005, PHYS REV LETT, V94, P6802
  • [9] Statistics and parametric correlations of Coulomb blockade peak fluctuations in quantum dots
    Folk, JA
    Patel, SR
    Godijn, SF
    Huibers, AG
    Cronenwett, SM
    Marcus, CM
    Campman, K
    Gossard, AC
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1699 - 1702
  • [10] Correlation-induced single-flux-quantum penetration in quantum rings
    Giesbers, A. J. M.
    Zeitler, U.
    Katsnelson, M. I.
    Reuter, D.
    Wieck, A. D.
    Biasiol, G.
    Sorba, L.
    Maan, J. C.
    [J]. NATURE PHYSICS, 2010, 6 (03) : 173 - 177