Anomaly Detection using Machine Learning with a Case Study

被引:0
作者
Jidiga, Goverdhan Reddy [1 ,2 ]
Sammulal, P. [1 ,3 ]
机构
[1] JNTU, Hyderabad, Andhra Pradesh, India
[2] Govt AP, Dept Tech Educ, Hyderabad, Andhra Pradesh, India
[3] JNTUH CEJ, Kondagattu, Karimnager, India
来源
2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT) | 2014年
关键词
anomaly detection; decision tree; machine learning; DECISION TREES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
the traditional security mechanisms are not stable in the present usage of corporate applications due to the frequent change in anomaly definitions and lack of control on security vulnerabilities in existing anomaly detection systems (ADS). In this paper we have given a brief study about performance criteria used in anomaly detection based on mathematical statistics to specify boundaries in emerging applications used in the world. Here the new RBDT (Rule Based Decision Tree) is a machine learning approach given to classify the records of real time bank dataset taken as case study. The anomaly detection is done by this machine learning approach is well compare to some previous approaches suitable in all cases of technical trends. Also this paper presented adorned rule set to improve the performance of anomaly detection technique by evaluating parameters. At last given some discussions on analysis of case study after simulation and how the anomaly detection satisfies the criteria.
引用
收藏
页码:1060 / 1065
页数:6
相关论文
共 50 条
  • [1] Anomaly Detection in Smart Grids using Machine Learning
    Shabad, Prem Kumar Reddy
    Alrashide, Abdulmueen
    Mohammed, Osama
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [2] Anomaly detection in IoT environment using machine learning
    Bilakanti, Harini
    Pasam, Sreevani
    Palakollu, Varshini
    Utukuru, Sairam
    SECURITY AND PRIVACY, 2024, 7 (03)
  • [3] Internet of Things Anomaly Detection using Machine Learning
    Njilla, Laruent
    Pearlstein, Larry
    Wu, Xin-Wen
    Lutz, Adam
    Ezekiel, Soundararajan
    2019 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2019,
  • [4] Secure and transparent energy management using blockchain and machine learning anomaly detection: A case study of the Ausgrid dataset
    Moumni, Nourchen
    Chaabane, Faten
    Drira, Fadoua
    Boutaleb, Youssef
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 203
  • [5] RBDT: The cascading of machine learning classifiers for anomaly detection with case study of two datasets
    Jidiga, Goverdhan Reddy
    Sammulal, Porika
    Advances in Intelligent Systems and Computing, 2015, 320 : 309 - 324
  • [6] Anomaly Detection with Machine Learning Models Using API Calls
    Sahin, Varol
    Satilmis, Hami
    Yazar, Bilge Kagan
    Akleylek, Sedat
    INFORMATION TECHNOLOGIES AND THEIR APPLICATIONS, PT II, ITTA 2024, 2025, 2226 : 298 - 309
  • [7] A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
    Diro, Abebe
    Chilamkurti, Naveen
    Nguyen, Van-Doan
    Heyne, Will
    SENSORS, 2021, 21 (24)
  • [8] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [9] Anomaly Detection in Industrial Networks using Machine Learning: A Roadmap
    Meshram, Ankush
    Haas, Christian
    MACHINE LEARNING FOR CYBER PHYSICAL SYSTEMS, 2017, 3 : 65 - 72
  • [10] Anomaly Detection for Strain of Slope Surface Using Machine Learning
    Nakane, Ryota
    Hiraoka, Nobutaka
    Kikkawa, Naotaka
    Hiranai, Kazuki
    Itoh, Kazuya
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 419 - 430