Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states

被引:6
|
作者
Marian, Paulina [1 ]
Marian, Tudor A. [1 ]
机构
[1] Univ Bucharest, Ctr Adv Quantum Phys, Dept Phys, R-077125 Magurele, Romania
关键词
SEPARABILITY CRITERION; GAUSSIAN STATES; QUANTUM; INSEPARABILITY; ENTANGLEMENT; PARADOX; FORMS;
D O I
10.1103/PhysRevA.103.062224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Rosen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party (N vs 1)-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable state. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of (N vs 1)-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously known criteria of separability and one-way unsteerability.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario
    Quan, Quan
    Zhu, Huangjun
    Fan, Heng
    Yang, Wen-Li
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [42] DETECTING EINSTEIN-PODOLSKY-ROSEN STEERING FOR CONTINUOUS VARIABLE WAVEFUNCTIONS
    Su, Hong-Yi
    Chen, Jing-Ling
    Wu, Chunfeng
    Deng, Dong-Ling
    Oh, C. H.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (02)
  • [43] Device-independent verification of Einstein-Podolsky-Rosen steering
    Zhao, Yuan-Yuan
    Zhang, Chao
    Cheng, Shuming
    LI, Xinhui
    Guo, Yu
    Liu, Bi-Heng
    Ku, Huan-Yu
    Chen, Shin-Liang
    Wen, Qiaoyan
    Huang, Yun-Feng
    Xiang, Guo-Yong
    LI, Chuan-Feng
    Guo, Guang-Can
    OPTICA, 2023, 10 (01): : 66 - 71
  • [44] Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering
    Wang, M.
    Gong, Q. H.
    Ficek, Z.
    He, Q. Y.
    SCIENTIFIC REPORTS, 2015, 5
  • [45] Signifying the nonlocality of NOON states using Einstein-Podolsky-Rosen steering inequalities
    Teh, R. Y.
    Rosales-Zarate, L.
    Opanchuk, B.
    Reid, M. D.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [46] Monogamy of Einstein-Podolsky-Rosen Steering in the Background of an Asymptotically Flat Black Hole
    Wang, Jieci
    Jing, Jiliang
    Fan, Heng
    ANNALEN DER PHYSIK, 2018, 530 (03)
  • [47] Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering
    Sun, Kai
    Ye, Xiang-Jun
    Xu, Jin-Shi
    Xu, Xiao-Ye
    Tang, Jian-Shun
    Wu, Yu-Chun
    Chen, Jing-Ling
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2016, 116 (16)
  • [48] Tunable asymmetric Einstein-Podolsky-Rosen steering of microwave photons in superconducting circuits
    Wu, Kun
    Cheng, Guangling
    Chen, Aixi
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (02) : 337 - 344
  • [49] Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering
    He, Qiongyi
    Rosales-Zarate, Laura
    Adesso, Gerardo
    Reid, Margaret D.
    PHYSICAL REVIEW LETTERS, 2015, 115 (18)
  • [50] Scaling of Einstein-Podolsky-Rosen steering in spin chains
    Cheng, W. W.
    Piilo, J.
    PHYSICA SCRIPTA, 2020, 95 (03)