Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states

被引:6
|
作者
Marian, Paulina [1 ]
Marian, Tudor A. [1 ]
机构
[1] Univ Bucharest, Ctr Adv Quantum Phys, Dept Phys, R-077125 Magurele, Romania
关键词
SEPARABILITY CRITERION; GAUSSIAN STATES; QUANTUM; INSEPARABILITY; ENTANGLEMENT; PARADOX; FORMS;
D O I
10.1103/PhysRevA.103.062224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Rosen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party (N vs 1)-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable state. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of (N vs 1)-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously known criteria of separability and one-way unsteerability.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Strong Einstein-Podolsky-Rosen steering with unconditional entangled states
    Steinlechner, Sebastian
    Bauchrowitz, Joeran
    Eberle, Tobias
    Schnabel, Roman
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [22] Relativistic Einstein-Podolsky-Rosen correlations for vector and tensor states
    Caban, Pawel
    Rembielinski, Jakub
    Wlodarczyk, Marta
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [23] Quantifying Einstein-Podolsky-Rosen Steering
    Skrzypczyk, Paul
    Navascues, Miguel
    Cavalcanti, Daniel
    PHYSICAL REVIEW LETTERS, 2014, 112 (18)
  • [24] One-way Einstein-Podolsky-Rosen Steering
    Bowles, Joseph
    Vertesi, Tamas
    Quintino, Marco Tulio
    Brunner, Nicolas
    PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [25] Satisfying the Einstein-Podolsky-Rosen criterion with massive particles
    Peise, J.
    Kruse, I.
    Lange, K.
    Luecke, B.
    Pezze, L.
    Arlt, J.
    Ertmer, W.
    Hammerer, K.
    Santos, L.
    Smerzi, A.
    Klempt, C.
    COMPLEX LIGHT AND OPTICAL FORCES X, 2016, 9764
  • [26] Quantifying the Mesoscopic Nature of Einstein-Podolsky-Rosen Nonlocality
    Reid, M. D.
    He, Q. Y.
    PHYSICAL REVIEW LETTERS, 2019, 123 (12)
  • [27] Satisfying the Einstein-Podolsky-Rosen criterion with massive particles
    Peise, J.
    Kruse, I.
    Lange, K.
    Luecke, B.
    Pezze, L.
    Arlt, J.
    Ertmer, W.
    Hammerer, K.
    Santos, L.
    Smerzi, A.
    Klempt, C.
    NATURE COMMUNICATIONS, 2015, 6
  • [28] Tighter Einstein-Podolsky-Rosen steering inequality based on the sum-uncertainty relation
    Maity, Ananda G.
    Datta, Shounak
    Majumdar, A. S.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [29] Swapping of Gaussian Einstein-Podolsky-Rosen steering
    Wang, Meihong
    Qin, Zhongzhong
    Su, Xiaolong
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [30] Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates
    Colciaghi, Paolo
    Li, Yifan
    Treutlein, Philipp
    Zibold, Tilman
    PHYSICAL REVIEW X, 2023, 13 (02)