Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states

被引:6
|
作者
Marian, Paulina [1 ]
Marian, Tudor A. [1 ]
机构
[1] Univ Bucharest, Ctr Adv Quantum Phys, Dept Phys, R-077125 Magurele, Romania
关键词
SEPARABILITY CRITERION; GAUSSIAN STATES; QUANTUM; INSEPARABILITY; ENTANGLEMENT; PARADOX; FORMS;
D O I
10.1103/PhysRevA.103.062224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Rosen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party (N vs 1)-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable state. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of (N vs 1)-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously known criteria of separability and one-way unsteerability.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Einstein-Podolsky-Rosen paradox in a hybrid bipartite system
    Dabrowski, Michal
    Parniak, Michal
    Wasilewski, Wojciech
    OPTICA, 2017, 4 (02): : 272 - 275
  • [2] Decoherence of Einstein-Podolsky-Rosen steering
    Rosales-Zarate, L.
    Teh, R. Y.
    Kiesewetter, S.
    Brolis, A.
    Ng, K.
    Reid, M. D.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (04) : A82 - A91
  • [3] Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations
    Schneeloch, James
    Broadbent, Curtis J.
    Walborn, Stephen P.
    Cavalcanti, Eric G.
    Howell, John C.
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [4] Einstein-Podolsky-Rosen steering in symmetrical Gaussian states
    Benech, E.
    Auyuanet, A.
    Lezama, A.
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [5] Genuine Multipartite Einstein-Podolsky-Rosen Steering
    He, Q. Y.
    Reid, M. D.
    PHYSICAL REVIEW LETTERS, 2013, 111 (25)
  • [6] Einstein-Podolsky-Rosen tachyons
    Bean, W. Clifton
    PHYSICS ESSAYS, 2009, 22 (03) : 246 - 267
  • [7] Einstein-Podolsky-Rosen steering in Gaussian weighted graph states
    Wang, Meihong
    Deng, Xiaowei
    Qin, Zhongzhong
    Su, Xiaolong
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [8] Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements
    Xiang, Yu
    Xu, Buqing
    Mista, Ladislav, Jr.
    Tufarelli, Tommaso
    He, Qiongyi
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [9] Einstein-Podolsky-Rosen Correlations of Ultracold Atomic Gases
    Bar-Gill, Nir
    Gross, Christian
    Mazets, Igor
    Oberthaler, Markus
    Kurizki, Gershon
    PHYSICAL REVIEW LETTERS, 2011, 106 (12)
  • [10] Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States
    Deng, Xiaowei
    Xiang, Yu
    Tian, Caixing
    Adesso, Gerardo
    He, Qiongyi
    Gong, Qihuang
    Su, Xiaolong
    Xie, Changde
    Peng, Kunchi
    PHYSICAL REVIEW LETTERS, 2017, 118 (23)