Multimodal striatal neuromarkers in distinguishing parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease

被引:15
作者
Pang, Huize [1 ]
Yu, Ziyang [2 ]
Yu, Hongmei [3 ]
Chang, Miao [1 ]
Cao, Jibin [1 ]
Li, Yingmei [1 ]
Guo, Miaoran [1 ]
Liu, Yu [1 ]
Cao, Kaiqiang [1 ]
Fan, Guoguang [1 ]
机构
[1] China Med Univ, Dept Radiol, Affiliated Hosp 1, 155 Nanjing North St, Shenyang 110001, Liaoning, Peoples R China
[2] Xiamen Univ, Sch Med, Xiamen, Peoples R China
[3] China Med Univ, Dept Neurol, Affiliated Hosp 1, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Idiopathic Parkinson's disease; machine learning; multimodal MRI; parkinsonian variant of multiple system atrophy; striatum; PROGRESSIVE SUPRANUCLEAR PALSY; BRAIN IRON DEPOSITION; CONNECTIVITY; DIAGNOSIS; ACCURACY;
D O I
10.1111/cns.13959
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Aims To develop an automatic method of classification for parkinsonian variant of multiple system atrophy (MSA-P) and Idiopathic Parkinson's disease (IPD) in early to moderately advanced stages based on multimodal striatal alterations and identify the striatal neuromarkers for distinction. Methods 77 IPD and 75 MSA-P patients underwent 3.0 T multimodal MRI comprising susceptibility-weighted imaging, resting-state functional magnetic resonance imaging, T1-weighted imaging, and diffusion tensor imaging. Iron-radiomic features, volumes, functional and diffusion scalars of bilateral 10 striatal subregions were calculated and provided to the support vector machine for classification Results A combination of iron-radiomic features, function, diffusion, and volumetric measures optimally distinguished IPD and MSA-P in the testing dataset (accuracy 0.911 and area under the receiver operating characteristic curves [AUC] 0.927). The diagnostic performance further improved when incorporating clinical variables into the multimodal model (accuracy 0.934 and AUC 0.953). The most crucial factor for classification was the functional activity of the left dorsolateral putamen. Conclusion The machine learning algorithm applied to multimodal striatal dysfunction depicted dorsal striatum and supervening prefrontal lobe and cerebellar dysfunction through the frontostriatal and cerebello-striatal connections and facilitated accurate classification between IPD and MSA-P. The dorsolateral putamen was the most valuable neuromarker for the classification.
引用
收藏
页码:2172 / 2182
页数:11
相关论文
共 57 条
[1]   Differentiation of multiple system atrophy from Parkinson's disease by structural connectivity derived from probabilistic tractography [J].
Abos, Alexandra ;
Baggio, Hugo C. ;
Segura, Barbara ;
Campabadal, Anna ;
Uribe, Carme ;
Milena Giraldo, Darly ;
Perez-Soriano, Alexandra ;
Munoz, Esteban ;
Compta, Yaroslau ;
Junque, Carme ;
Jose Marti, Maria .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   MR biomarkers of degenerative brain disorders derived from diffusion imaging [J].
Andica, Christina ;
Kamagata, Koji ;
Hatano, Taku ;
Saito, Yuya ;
Ogaki, Kotaro ;
Hattori, Nobutaka ;
Aoki, Shigeki .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (06) :1620-1636
[3]   Cerebellar resting-state functional connectivity in Parkinson's disease and multiple system atrophy: Characterization of abnormalities and potential for differential diagnosis at the single-patient level [J].
Baggio, Hugo C. ;
Abos, Alexandra ;
Segura, Barbara ;
Campabadal, Anna ;
Uribe, Carme ;
Giraldo, Darly M. ;
Perez-Soriano, Alexandra ;
Munoz, Esteban ;
Compta, Yaroslau ;
Junque, Carme ;
Jose Marti, Maria .
NEUROIMAGE-CLINICAL, 2019, 22
[4]   Multimodal MRI assessment of nigro-striatal pathway in multiple system atrophy and Parkinson disease [J].
Barbagallo, Gaetano ;
Sierra-Pena, Maria ;
Nemmi, Federico ;
Pavy-Le Traon, Anne ;
Meissner, Wassilios G. ;
Rascol, Olivier ;
Peran, Patrice .
MOVEMENT DISORDERS, 2016, 31 (03) :325-334
[5]   Parkinson's disease [J].
Bloem, Bastiaan R. ;
Okun, Michael S. ;
Klein, Christine .
LANCET, 2021, 397 (10291) :2284-2303
[6]   Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board [J].
Bluemke, David A. ;
Moy, Linda ;
Bredella, Miriam A. ;
Ertl-Wagner, Birgit B. ;
Fowler, Kathryn J. ;
Goh, Vicky J. ;
Halpern, Elkan F. ;
Hess, Christopher P. ;
Schiebler, Mark L. ;
Weiss, Clifford R. .
RADIOLOGY, 2020, 294 (03) :487-489
[7]   Cognitive impairment and structural brain damage in multiple system atrophy-parkinsonian variant [J].
Caso, Francesca ;
Canu, Elisa ;
Lukic, Milica Jecmenica ;
Petrovic, Igor N. ;
Fontana, Andrea ;
Nikolic, Ivan ;
Kostic, Vladimir S. ;
Filippi, Massimo ;
Agosta, Federica .
JOURNAL OF NEUROLOGY, 2020, 267 (01) :87-94
[8]   Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis [J].
Chau, Minh Toan ;
Todd, Gabrielle ;
Wilcox, Robert ;
Agzarian, Marc ;
Bezak, Eva .
PARKINSONISM & RELATED DISORDERS, 2020, 78 :12-20
[9]   Functional MRI of brain physiology in aging and neurodegenerative diseases [J].
Chen, J. Jean .
NEUROIMAGE, 2019, 187 :209-225
[10]   Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson's Disease [J].
Cheng, Zenghui ;
Zhang, Jibing ;
He, Naying ;
Li, Yan ;
Wen, Yaofeng ;
Xu, Hongmin ;
Tang, Rongbiao ;
Jin, Zhijia ;
Haacke, E. Mark ;
Yan, Fuhua ;
Qian, Dahong .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11