OPTIMIZATION APPROACH FOR THE SIMULTANEOUS RECONSTRUCTION OF THE DIELECTRIC PERMITTIVITY AND MAGNETIC PERMEABILITY FUNCTIONS FROM LIMITED OBSERVATIONS

被引:13
作者
Beilina, Larisa [1 ,2 ]
Cristofol, Michel [3 ]
Niinimaki, Kati [4 ,5 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Gothenburg Univ, SE-41296 Gothenburg, Sweden
[3] Aix Marseille Univ, Inst Math Marseille, F-13453 Marseille, France
[4] Aix Marseille Univ, F-13453 Marseille, France
[5] Univ Eastern Finland, Kuopio 70211, Finland
基金
瑞典研究理事会;
关键词
Maxwell; time-dependent inverse problem; finite element method; coefficient inverse problem; optimization; BOUNDARY-VALUE PROBLEM; MAXWELLS EQUATIONS; FINITE-ELEMENTS;
D O I
10.3934/ipi.2015.9.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions of the Maxwell's system in 3D with limited boundary observations of the electric field. The theoretical stability for the problem is provided by the Carleman estimates. For the numerical computations the problem is formulated as an optimization problem and hybrid finite element/difference method is used to solve the parameter identification problem.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
[1]  
[Anonymous], 2000, MATH ITS APPL
[2]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[3]  
Bakushinsky A., 2011, INVERSE 3 POSED PROB, V54
[4]   A posteriori error estimation in computational inverse scattering [J].
Beilina, L ;
Johnson, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :23-35
[5]   Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity [J].
Beilina, Larisa ;
Nguyen Trung Thanh ;
Klibanov, Michael V. ;
Malmberg, John Bondestam .
INVERSE PROBLEMS, 2014, 30 (10)
[6]   Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation [J].
Beilina, Larisa ;
Nguyen Trung Thanh ;
Klibanov, Michael V. ;
Fiddy, Michael A. .
INVERSE PROBLEMS, 2014, 30 (02)
[7]   Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell's system [J].
Beilina, Larisa .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04) :702-733
[9]  
Beilina L, 2010, TWMS J PURE APPL MAT, V1, P176
[10]  
Belishev M. I., 2004, J MATH SCI, V122, P3459