Synergistic Activity of Imipenem in Combination with Ceftazidime/Avibactam or Avibactam against Non-MBL-Producing Extensively Drug-Resistant Pseudomonas aeruginosa

被引:6
作者
Zhang, Yulin [1 ]
Zhao, Jiankang [1 ]
Han, Jiajing [1 ]
Fan, Yanyan [1 ]
Xiong, Zhujia [1 ]
Zou, Xiaohui [1 ]
Li, Binbin [1 ]
Liu, Xinmeng [1 ]
Li, Ziyao [1 ]
Lu, Binghuai [1 ,2 ]
Cao, Bin [1 ,3 ,4 ]
机构
[1] China Japan Friendship Hosp, Natl Clin Res Ctr Resp Dis, Dept Pulm & Crit Care Med, Lab Clin Microbiol & Infect Dis,Ctr Resp Dis, Beijing, Peoples R China
[2] Chinese Acad Med Sci, Peking Union Med Coll, Inst Resp Med, Beijing, Peoples R China
[3] Capital Med Univ, Clin Ctr Pulm Infect, Beijing, Peoples R China
[4] Tsinghua Univ Peking Univ Joint Ctr Life Sci, Beijing, Peoples R China
关键词
ceftazidime-avibactam; extensively drug-resistant Pseudomonas aeruginosa; imipenem; synergistic antibacterial activity; antibiotic resistance; CARBAPENEM-RESISTANT; CEPHALOSPORIN; TIGECYCLINE; MECHANISMS;
D O I
10.1128/spectrum.02740-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Extensively drug-resistant Pseudomonas aeruginosa (XDRPA) infection is a significant public health threat due to a lack of effective therapeutic options. New beta-lactam-beta-lactamase inhibitor combinations, including ceftazidime-avibactam (CZA), have shown a high resistance rate to XDRPA. This study was therefore conducted to describe the underlying genomic mechanism of resistance for CZA nonsusceptible XDRPA strains that are non-metallo-beta-lactamase (MBL) producers as well as to examine synergism of CZA and other antipseudomonal agents. Furthermore, the synergistic antibacterial activity of the most effective antimicrobial combination against non-MBL-producing XDRPA was evaluated through in vitro experiments. The resistance profiles of 15 CZA-resistant XDRPA strains isolated from clinical specimens in China-Japan Friendship Hospital between January 2017 to December 2020 were obtained by whole-genome sequencing (WGS) analysis. MBL genes bla(IMP-1) and bla(IMP-45) were found in 2 isolates (2/15, 13.3%); the other underlying CZA-resistance mechanisms involved the decreased OprD porin (13/13), bla(AmpC) overex-pression (8/13) or mutation (13/13), and upregulated efflux pumps (13/13). CZA-imipenem (CZA-IPM) combination was identified to be the most effective against non-MBL-producing XDRPA according to the results of WGS analysis and combined antimicrobial susceptibility tests, with an approximately 16.62-fold reduction in MICs compared to CZA alone. Furthermore, the results of checkerboard analysis and growth curve displayed the synergistic antimicrobial activity of CZA and 1PM against non-MBL-producing XDRPA. Electron microscopy also revealed that CZA-IPM combination might lead to more cellular structural alterations than CZA or 1PM alone. This study suggested that the CZA-IPM combi- nation has potential for non-MBL-producing XDRPA with bla(AmpC) overexpression or mutation, decreased OprD porin, and upregulated efflux pumps. IMPORTANCE Handling the infections by extensively drug-resistant Pseudomonas aeruginosa (XDRPA) strains is challenging due to their complicated antibiotic resistance mechanisms in immunosuppressed patients with pulmonary diseases (e.g., cystic fibrosis, chronic obstructive pulmonary disease, and lung transplant), ventilator-associated pneumonia, and bloodstream infections. The current study suggested the potentiality of the ceftazidime-avibactam-imipenem combination against XDRPA with bla(AmpC) overexpression or mutation, decreased OprD porin, and/or upregulated efflux pumps. Our findings indicate the necessity of combined drug sensitivity tests against XDRPA and also lay a foundation for the development of prevention, control, and treatment strategies in XDRPA infections.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing [J].
Cabot, Gabriel ;
Lopez-Causape, Carla ;
Ocampo-Sosa, Alain A. ;
Sommer, Lea M. ;
Angeles Dominguez, Maria ;
Zamorano, Laura ;
Juan, Carlos ;
Tubau, Fe ;
Rodriguez, Cristina ;
Moya, Bartolome ;
Pena, Carmen ;
Martinez-Martinez, Luis ;
Plesiat, Patrick ;
Oliver, Antonio .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (12) :7415-7423
[2]   Combination of MexAB-OprM overexpression and mutations in efflux regulators, PBPs and chaperone proteins is responsible for ceftazidime/avibactam resistance in Pseudomonas aeruginosa clinical isolates from US hospitals [J].
Castanheira, Mariana ;
Doyle, Timothy B. ;
Smith, Caitlin J. ;
Mendes, Rodrigo E. ;
Sader, Helio S. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 (09) :2588-2595
[3]   Mutation-Driven β-Lactam Resistance Mechanisms among Contemporary Ceftazidime-Nonsusceptible Pseudomonas aeruginosa Isolates from US Hospitals [J].
Castanheira, Mariana ;
Mills, Janet C. ;
Farrell, David J. ;
Jones, Ronald N. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (11) :6844-6850
[4]   How does Pseudomonas aeruginosa affect the progression of bronchiectasis? [J].
Chai, Y-H ;
Xu, J-F .
CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (03) :313-318
[5]   Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis [J].
Chalhoub, Hussein ;
Saenz, Yolanda ;
Nichols, Wright W. ;
Tulkens, Paul M. ;
Van Bambeke, Francoise .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2018, 52 (05) :697-701
[6]  
Clinical and Laboratory Standards Institute [CLSI], 2014, M100S24 CLSI, DOI DOI 10.1093/OFID/OFV050
[7]   Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa [J].
Davido, Benjamin ;
Fellous, Lesly ;
Lawrence, Christine ;
Maxime, Virginie ;
Rottman, Martin ;
Dinh, Aurelien .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (09)
[8]   ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa [J].
de la Rosa, Jose-Manuel Ortiz ;
Nordmann, Patrice ;
Poirel, Laurent .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 (07) :1934-1939
[9]   Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1 [J].
Dean, CR ;
Visalli, MA ;
Projan, SJ ;
Sum, PE ;
Bradford, PA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (03) :972-978
[10]   Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology [J].
del Barrio-Tofino, Ester ;
Zamorano, Laura ;
Cortes-Lara, Sara ;
Lopez-Causape, Carla ;
Sanchez-Diener, Irina ;
Cabot, Gabriel ;
Bou, German ;
Martinez-Martinez, Luis ;
Oliver, Antonio ;
Galan, Fatima ;
Gracia, Irene ;
Rodriguez, Manuel Antonio ;
Martin, Lina ;
Sanchez, Juan Manuel ;
Vinuela, Laura ;
Garcia, Ma Victoria ;
Lepe, Jose Antonio ;
Aznar, Javier ;
Lopez-Hernandez, Inma ;
Seral, Cristina ;
Castillo-Garcia, Francisco Javier ;
Lopez-Calleja, Ana Isabel ;
de la Iglesia, Carmen Aspiroz Pedro ;
Ramon, Susana ;
Riera, Elena ;
Perez, Maria Cruz ;
Gallegos, Carmen ;
Calvo, Jorge ;
Quesada, Maria Dolores ;
Marco, Francesc ;
Hoyos, Yannick ;
Horcajada, Juan Pablo ;
Larrosa, Nieves ;
Gonzalez, Juan Jose ;
Tubau, Fe ;
Capilla, Silvia ;
Perez-Moreno, Mar Olga ;
Centelles, Ma Jose ;
Padilla, Emma ;
Rivera, Alba ;
Mirelis, Beatriz ;
Rodriguez-Tarazona, Raquel Elisa ;
Arenal-Andres, Noelia ;
Ortega, Maria del Pilar ;
Megias, Gregoria ;
Garcia, Inmaculada ;
Colmenarejo, Cristina ;
Gonzalez, Jose Carlos ;
Martinez, Nora Mariela ;
Gomila, Ba Prime Rbara .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 (07) :1825-1835