Learning object intrinsic structure for robust visual tracking

被引:0
|
作者
Wang, Q [1 ]
Xu, GY [1 ]
Ai, HZ [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel method to learn the intrinsic object structure for robust visual tracking is proposed. The basic assumption is that the parameterized object state lies on a low dimensional manifold and can be learned from training data. Based on this assumption, firstly we derived the dimensionality reduction and density estimation algorithm for unsupervised learning of object intrinsic representation, the obtained non-rigid part of object state reduces even to 2 dimensions. Secondly the dynamical model is derived and trained based on this intrinsic representation. Thirdly the learned intrinsic object structure is integrated into a particle;filter style tracker. We will show that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle filter style tracker more robust and reliable. Experiments show that the learned tracker performs much better than existing trackers on the tracking of complex non-rigid motions such as fish twisting with self-occlusion and large inter frame lip motion. The proposed method also has the potential to solve other type of tracking problems.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [41] Learning Adaptive Metric for Robust Visual Tracking
    Jiang, Nan
    Liu, Wenyu
    Wu, Ying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (08) : 2288 - 2300
  • [42] Siamese Visual Tracking with Robust Adaptive Learning
    Zhang, Wancheng
    Chen, Zhi
    Liu, Peizhong
    Deng, Jianhua
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 153 - 157
  • [43] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771
  • [44] Siamese Graph Attention Networks for robust visual object tracking
    Lu, Junjie
    Li, Shengyang
    Guo, Weilong
    Zhao, Manqi
    Yang, Jian
    Liu, Yunfei
    Zhou, Zhuang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [45] Biogeography based optimization method for robust visual object tracking
    Daneshyar, Seyed Abbas
    Charkari, Nasrollah Moghadam
    APPLIED SOFT COMPUTING, 2022, 122
  • [46] Robust Template Adjustment Siamese Network for Object Visual Tracking
    Tang, Chuanming
    Qin, Peng
    Zhang, Jianlin
    SENSORS, 2021, 21 (04) : 1 - 17
  • [47] Trajectory Guided Robust Visual Object Tracking With Selective Remedy
    Wang, Han
    Liu, Jing
    Su, Yuting
    Yang, Xiaokang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (07) : 3425 - 3440
  • [48] Robust Visual Object Tracking with Top-down Reasoning
    Zhang, Mengdan
    Feng, Jiashi
    Hu, Weiming
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 226 - 234
  • [49] ROBUST TRAJECTORY TRACKING WITH OPTIMAL VISUAL SERVOING ON A DEFORMABLE OBJECT
    Derrar, Yasser
    Saidi, Farah
    Malti, Abed
    International Journal of Robotics and Automation, 2023, 38 (03): : 180 - 193
  • [50] Robust Visual Tracking with Reliable Object Information and Kalman Filter
    Chen, Hang
    Zhang, Weiguo
    Yan, Danghui
    SENSORS, 2021, 21 (03) : 1 - 18