A note on Metropolis-Hastings kernels for general state spaces

被引:0
|
作者
Tierney, L [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Markov chain Monte Carlo; Peskun's theorem; mixture kernels;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Metropolis-Hastings algorithm is a method of constructing a reversible Markov transition kernel with a specified invariant distribution. This note describes necessary and sufficient conditions on the candidate generation kernel and the acceptance probability function for the resulting transition kernel and invariant distribution to satisfy the detailed balance conditions. A simple general formulation is used that covers a range of special cases treated separately in the literature. In addition, results on a useful partial ordering of finite state space reversible transition kernels are extended to general state spaces and used to compare the performance of two approaches to using mixtures in Metropolis-Hastings kernels.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] A general construction for parallelizing Metropolis-Hastings algorithms
    Calderhead, Ben
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (49) : 17408 - 17413
  • [2] A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms
    Roberts, GO
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (04) : 1210 - 1217
  • [3] ADAPTIVE INDEPENDENT METROPOLIS-HASTINGS
    Holden, Lars
    Hauge, Ragnar
    Holden, Marit
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (01) : 395 - 413
  • [4] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    AMERICAN STATISTICIAN, 1995, 49 (04) : 327 - 335
  • [5] On directional Metropolis-Hastings algorithms
    Eidsvik, J
    Tjelmeland, H
    STATISTICS AND COMPUTING, 2006, 16 (01) : 93 - 106
  • [6] Stability of noisy Metropolis-Hastings
    Medina-Aguayo, F. J.
    Lee, A.
    Roberts, G. O.
    STATISTICS AND COMPUTING, 2016, 26 (06) : 1187 - 1211
  • [7] Non-reversible Metropolis-Hastings
    Joris Bierkens
    Statistics and Computing, 2016, 26 : 1213 - 1228
  • [8] On the Poisson equation for Metropolis-Hastings chains
    Mijatovic, Aleksandar
    Vogrinc, Jure
    BERNOULLI, 2018, 24 (03) : 2401 - 2428
  • [9] Metropolis-Hastings transition kernel couplings
    O'Leary, John
    Wang, Guanyang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1101 - 1124
  • [10] Metropolis-Hastings algorithms with adaptive proposals
    Cai, Bo
    Meyer, Renate
    Perron, Francois
    STATISTICS AND COMPUTING, 2008, 18 (04) : 421 - 433