UV-ozone contributions towards facile self-assembly and high performance of silicon-carbon fiber materials as lithium-ion battery anodes

被引:3
|
作者
Bai, Xiao [1 ,2 ]
Zhang, Hui [2 ]
Lin, Junpin [1 ]
Zhang, Guang [2 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
关键词
Lithium-ion battery; Silicon; Carbon fibers; UV-ozone; Electrostatic self-assembly; Surface modification; REDUCED GRAPHENE OXIDE; SI NANOPARTICLES; COMPOSITE; NANOFIBERS; NANOCOMPOSITE; DEPOSITION; SHEETS; LAYER; FILM;
D O I
10.1016/j.jcis.2021.04.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si-carbon composites have been considered as next generation lithium-ion battery anodes, with a view to sufficiently exerting the respective superiorities of high specific capacity of Si as well as excellent mechanical flexibility and electrical conductivity of carbon. However, direct blending of carbon with Si cannot obtain a synergy composite, resulting in inferior cycle properties during charge-discharge due to huge volume changes and deficient electron-conducting channels from the unavoidably aggregated Si. Herein, the composition of carbon fibers (CNFs) with Si nanoparticles (SiNPs) has been performed through UV-ozone surface modification followed by electrostatic self-assembly. It is found that solvent-free UV-ozone exposure of CNFs for 20 min successfully introduces carboxylic groups, as conventional acid treatment for 12 h. Besides UV-ozone surface modification provides an efficient and scalable route, the distribution and functionalization of CNFs can be also modified to effectively combine with amino-functionalized SiNPs. As a result, such Si-CNF composites containing 70.0 wt% SiNPs are able to exhibit excellent cycle performance with high coulombic efficiency of 74.8% at the 1st cycle and high specific discharge capacity of 1063 mAh g(-1) at the 400th cycle. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:339 / 347
页数:9
相关论文
共 50 条
  • [1] Novel binary regulated silicon-carbon materials as high-performance anodes for lithium-ion batteries
    He, Xinran
    Xiang, Xiaolin
    Pan, Piao
    Li, Peidong
    Cui, Yuehua
    NANOTECHNOLOGY, 2024, 35 (35)
  • [2] Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries
    Wang, Aoning
    Liu, Fandong
    Wang, Zhoulu
    Liu, Xiang
    RSC ADVANCES, 2016, 6 (107): : 104995 - 105002
  • [3] Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes
    Feng, Kun
    Ahn, Wook
    Lui, Gregory
    Park, Hey Woong
    Kashkooli, Ali Ghorbani
    Jiang, Gaopeng
    Wang, Xiaolei
    Xiao, Xingcheng
    Chen, Zhongwei
    NANO ENERGY, 2016, 19 : 187 - 197
  • [4] Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly
    Tang, Xiaofu
    Wen, Guangwu
    Song, Yan
    APPLIED SURFACE SCIENCE, 2018, 436 : 398 - 404
  • [5] Graphene-doped silicon-carbon materials with multi-interface structures for lithium-ion battery anodes
    Li, Xin
    Li, Kun
    Yuan, Man
    Zhang, Jiapeng
    Liu, Haiyan
    Li, Ang
    Chen, Xiaohong
    Song, Huaihe
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 667 : 470 - 477
  • [6] Irrigation System-Inspired Open-/Closed-Pore Hybrid Porous Silicon-Carbon Materials for Lithium-Ion Battery Anodes
    Shen, Xiaoqing
    Li, Zhenwei
    Zhang, Rui
    Yu, Yewei
    Yu, Peilun
    Yu, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (50) : 69282 - 69294
  • [7] Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries
    Sourice, Julien
    Bordes, Arnaud
    Boulineau, Adrien
    Alper, John P.
    Franger, Sylvain
    Quinsac, Axelle
    Habert, Aurelie
    Leconte, Yann
    De Vito, Eric
    Porcher, Willy
    Reynaud, Cecile
    Herlin-Boime, Nathalie
    Haon, Cedric
    JOURNAL OF POWER SOURCES, 2016, 328 : 527 - 535
  • [8] Nitrogen-doped carbon caging silicon nanoparticles for high performance lithium-ion battery anodes
    Xie, Yun
    He, Cun-Jian
    Zhang, Jun
    Hou, Yun-Lei
    Meng, Wen-Jie
    Zhao, Dong-Lin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 860
  • [9] Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials
    Zhang, Yaguang
    Du, Ning
    Zhu, Sijia
    Chen, Yifan
    Lin, Yangfan
    Wu, Shali
    Yang, Deren
    ELECTROCHIMICA ACTA, 2017, 252 : 438 - 445
  • [10] In Situ Synthesis of Silicon-Carbon Composites and Application as Lithium-Ion Battery Anode Materials
    Kim, Dae-Yeong
    Kim, Han-Vin
    Kang, Jun
    MATERIALS, 2019, 12 (18)